
blib Code Reference v1.4

David Hobach

Contents
blib . 4

Disclaimer . 4
Coding Conventions . 5
Library Usage . 5
Dependencies . 6
Imports . 6
Global Variables . 6
Global Aliases . 7
Functions . 8

args . 16
Dependencies . 16
Imports . 16
Global Variables . 16
Functions . 17

arr . 19
Dependencies . 19
Imports . 19
Functions . 19

cdoc . 20
Dependencies . 20
Imports . 21
Functions . 21

daemon . 25
Dependencies . 25
Imports . 25
Global Variables . 25
Functions . 25

date . 27
Dependencies . 28
Imports . 28
Functions . 28

delay . 29
Dependencies . 29

1

Imports . 29
Global Variables . 29
Functions . 29

dmcrypt . 30
Dependencies . 30
Imports . 30
Functions . 30

fd . 32
Dependencies . 32
Imports . 32
Functions . 32

flog . 32
Dependencies . 33
Imports . 33
Global Variables . 33
Functions . 33

fs . 37
Dependencies . 37
Imports . 37
Functions . 37

hash . 40
Dependencies . 40
Imports . 40
b_hash_file [file] [algorithm] . 40
b_hash_str [string] [algorithm] 40

http . 40
Dependencies . 41
Imports . 41
Global Variables . 41
Functions . 41

ini . 42
Dependencies . 42
Imports . 42
Functions . 43

keys . 44
Dependencies . 44
Imports . 44
Functions . 45

meta . 46
Dependencies . 46
Imports . 46
Functions . 47

multithreading/ipcm . 47
Dependencies . 47
Imports . 47
Functions . 48

2

multithreading/ipcv . 49
Dependencies . 49
Imports . 49
Functions . 49

multithreading/mtx . 51
Dependencies . 51
Imports . 51
Functions . 51

multithreading/multiw . 54
Dependencies . 54
Imports . 54
Functions . 54

net . 55
Dependencies . 55
Imports . 55
Global Variables . 55
Functions . 56

notify . 56
Dependencies . 56
Imports . 56
Functions . 56

os/osid . 57
Dependencies . 57
Imports . 57
Functions . 57

os/qubes4/dom0 . 59
Dependencies . 59
Imports . 60
Global Variables . 60
Functions . 60

proc . 71
Dependencies . 72
Imports . 72
Functions . 72

sqlite3 . 73
Dependencies . 73
Imports . 73
Functions . 73

str . 74
Dependencies . 75
Imports . 75
Functions . 75

tcolors . 75
Dependencies . 75
Imports . 75
Global Variables . 76

3

traps . 76
Dependencies . 76
Imports . 76
Functions . 76

types . 77
Dependencies . 77
Imports . 77
Global Variables . 77
Functions . 78

ui . 80
Dependencies . 81
Imports . 81
Functions . 81

wm . 81
Dependencies . 81
Imports . 81
Functions . 81

Reference List . 82

blib
blib - a bash library

The basic functions which are imported by default.

Copyright (C) 2022 David Hobach LGPLv3
version: Execute blib version or use b_version.

Disclaimer

This program is free software: you can redistribute it and/or modify
it under the terms of the Lesser GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
Lesser GNU General Public License for more details.

You should have received a copy of the Lesser GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

The above statements apply to all modules of blib if not mentioned
otherwise.

4

https://www.gnu.org/licenses/

Coding Conventions

1. embrace the KISS principle
2. some general guidelines: http://www.kfirlavi.com/blog/2012/11/14/defen

sive-bash-programming/
3. use b_[module]_[camel case function name] to denote functions meant

to be used by users of the library, B_[module]_[upper case var name] for
global variables

4. use BLIB_[module]_[upper case var name] for global variables (to be
avoided whenever possible) not meant to be used by library users (“private”
variables); library users can use setters or getters

5. use the BLIB_STORE with the above naming conventions for “private”
variables whenever possible

6. use blib_[module]_[camel case function name] to denote private functions
not meant to be used by library users; the function name should not contain
any underscores

7. the blib module itself is the only exception which can use b_, B_, blib_,
BLIB_ without module name

8. prefixes such as t_, T_ and UTD_ are exclusively related to test code
9. set exit codes (!= 0 –> issue) wherever it makes sense
10. keep the global namespace clean whenever possible
11. declare -g must be used in order to allow sourcing from a function

(b_import)
12. modules must check their dependencies via b_deps
13. modules should provide a header similar to that of the blib source file in

order to make the documentation generation work
14. modules may be placed in subfolders of arbitrary depth
15. use 0 to indicate true and 1 to indicate false for variables; for exit codes

use a non-zero exit code to indicate the number of errors
16. functions should be tagged with the following tags, if applicable:

@StateChanging - the function changes the internal state of the script in
a way that will not propagate to supershells (e.g. global variables) and
should thus not be called from subshells (unless the user wants the state
to only change in that shell)
@B_E - the function uses B_E for error handling and may thus behave
differently depending on the implemented error handler

Library Usage

with the default bash options:

source blib
b_checkVersion 1 0 || { >&2 echo "This script depends on blib (https://github.com/3hhh/blib) version 1.0 or higher. Please install a supported version." ; exit 1 ; }

b_import [module]

5

http://www.kfirlavi.com/blog/2012/11/14/defensive-bash-programming/
http://www.kfirlavi.com/blog/2012/11/14/defensive-bash-programming/

Dependencies

bats
cat
dirname
find
mktemp
mv
readlink
rm
sort
su
whoami

Imports

no imports

Global Variables

B_LIB_DIR blib/B_LIB_DIR
Path of the blib installation directory.

B_TEST_MODE blib/B_TEST_MODE
blib will set this variable to 0, if blib is running in test mode.
This variable may be used to bypass code during testing, if bats cannot test that
code due to its limitations (e.g. for EXIT traps which bats uses for itself).

B_CALLER_NAME blib/B_CALLER_NAME
Name of the executable or script as String which called blib and any child
libraries.

B_ERR blib/B_ERR
Global variable used for error handling throughout blib, cf. B_E.

It is recommended to always set an at least partially static error message on
confirmed errors as variables may be empty (which would indicate “no error” for
B_E).

B_RC blib/B_RC
Can be used to set the return code for B_E in the case of an error. It defaults
to 1.

This should be set to an integer value between 1 and 255. Any other value may
cause undefined behaviour.

6

B_CONF_DIR blib/B_CONF_DIR
Path to the blib configuration directory. Modules may create subfolders named
by their module name there. May not exist.

B_SCRIPT blib/B_SCRIPT
Global variable which can be used to obtain the two global variables
B_SCRIPT_DIR and B_SCRIPT_NAME as follows:

eval "$B_SCRIPT"

B_SCRIPT_NAME blib/B_SCRIPT_NAME
Path of the sourced or executed bash script executing the eval (symlinks are
resolved) of B_SCRIPT.

B_SCRIPT_DIR blib/B_SCRIPT_DIR
Name of the sourced or executed bash script executing the eval (symlinks are
resolved) of B_SCRIPT.

Global Aliases

Alias expansion is automatically enabled by blib as it is required for its core
functionality. So if you have strange aliases defined in your shell environment,
this may cause undefined blib behaviour.

B_E blib/B_E
The blib error handler: All blib modules use it whenever execution errors require
special handling that the currently executing code cannot achieve.

Syntax:

B_ERR="This is an error message." ; B_E ;

If you need to set the return/exit code, you can do it with B_RC:

B_ERR="This is another error message." ; B_RC=6 ; B_E ;

Calling B_E means:
Check B_ERR for an error message and if there is one, handle it. It can be
placed at the end of a line or on its own line. B_E will then process the error
message in the way defined by the error handler (cf. b_defaultErrorHandler)
and stop any further execution of code in the current context (function, script,
. . .) returning a non-zero exit code (1) unless the described error was fixed. In
the latter unlikely case it’ll let execution proceed.

More examples:

#handle a potentially failing command:
cmd || { B_ERR="cmd failed." ; B_E ; }

7

#capture stdout of a potentially failing command:
local out=
out="$(cmd)" || { B_ERR="cmd failed." ; B_E ; }

#handle multiple potentially failing commands in a try/catch like manner:
(set -e

cmd1
cmd2
cmd3

) #NOTE: || doesn't work here!
if [$? -ne 0] ; then

B_ERR="Some commands failed."
B_E

fi

The error handler can be re-defined at runtime with b_setErrorHandler.

Functions

b_printStackTrace [skip level] blib/b_printStackTrace
[skip level]: skip that many levels of the stack trace (optional, default: 1 - skip
this function call)
print the current stack trace in a human readable way
returns: stack trace with the first levels skipped as defined

b_nop blib/b_nop
Do nothing.
returns: nothing; sets a zero exit code

b_version [part] blib/b_version
Get the version of this blib instance.
[part]: Optional parameter defining the part of the version to retrieve (0: all as
String (default), 1: major as Integer, 2: minor as Integer).
returns: blib version as string; always sets a zero exit code

b_checkVersion [minimum allowed major] [minimum allowed
minor] [maximum allowed major] [maximum allowed minor]
blib/b_checkVersion
Check whether the currently running blib instance meets the given blib version
requirements.
To e.g. make sure you’re on blib version 1.1 or higher, use

source blib
b_checkVersion 1 2 || { >&2 echo "This script depends on blib (https://github.com/3hhh/blib) version 1.2 or higher. Please install a supported version." ; exit 1 ; }

[minimum allowed major]: The lowest acceptable major version number (default:
0).

8

[minimum allowed minor]: The lowest acceptable minor version number (default:
0).
[maximum allowed major]: The highest acceptable major version number (default:
infinite).
[maximum allowed minor]: The highest acceptable minor version number (default:
infinite).
returns: Sets a zero exit code, if an only if the currently running blib instance
meets the version requirements.

b_defaultErrorHandler [error out] [send err] [send stack trace]
blib/b_defaultErrorHandler
The blib default error handler.
As any error handler it must

1. handle the error message (if not the error itself) lying in B_ERR
2. not take any non-numeric arguments
3. not error out itself
4. implement the below [error out] as its first parameter (to make b_setBE

work)
5. ideally use b_error to send error messages to the user
6. return one of the following exit codes:

a) 0: if and only if the error was fixed entirely and the caller may
ignore the error (i.e. probably never)

b) 1: The error wasn’t fixed. Functions should return to their caller
indicating an error (non-zero status code). Direct shell calls will exit.
B_ERR is not reset to blank, i.e. the next call to B_E in the same
context will cause another error. The caller may use this to either
throw the error further or handle and clear the error.
c) 2: Force a stop of execution in the current shell / error out.

[error out]: Whether or not to call exit after the error message handling, if the
error couldn’t be handled (default: 0 = always error out / call exit). If set to 1,
B_E will allow e.g. functions to return to their callers.
[send err]: Whether or not to send the error message to the user (default: 0 =
send).
[send stack trace]: Whether or not to send a stack trace to the user (default:
identical to [send err]).
returns: see the description above

b_setBE [error out] blib/b_setBE
Set the [error out] behaviour of the currently configured error handler.

Contrary to b_setErrorHandler this function may be called by blib modules as
all error handlers are required to support [error out] as parameter.

Example for switching the error out behaviour:

9

b_setBE 1
funcThatMayCallB_E #without subshell
ret=$?
b_resetErrorHandler

[error out]: see b_defaultErrorHandler (default: 0)
returns: nothing, always sets a zero exit code
@StateChanging

b_setErrorHandler [handler] blib/b_setErrorHandler
Set the error handler for all future exections of B_E in the current scope.

You can do this in e.g. subshells to limit the effect.

blib modules should only use this function if absolutely necessary to temporarily
modify the error behaviour whilst making sure that b_resetErrorHandler is
called in the end. Otherwise it will prevent library users from setting the general
behaviour in their scripts.

Usually you do not want to write an entirely new handler, but modify the
b_defaultErrorHandler parameters with this setter or use b_setBE for that.
[handler]: Function to handle errors. See b_defaultErrorHandler for details.
returns: nothing
@StateChanging

b_resetErrorHandler [reset B_ERR] blib/b_resetErrorHandler
Set the error handler to whatever it was before the last call to b_setErrorHandler
or b_setBE.
[reset B_ERR]: Whether or not to also reset B_ERR (default: true/0).
returns: nothing, always sets a zero exit code
@StateChanging

b_getErrorHandler blib/b_getErrorHandler
Get the currently for B_E configured error handler.
returns: the error handler function

b_silence [function] [param 1] .. [param p] blib/b_silence
Call the given function with its parameters in the current shell context whilst
suppressing all of its output to both stdout and stderr. Anything written to
B_ERR however is passed to B_E (which can still write to stderr).

This function is useful when you want to keep an error message set with B_ERR,
but discard everything else.
In contrast yourfunction &> /dev/null may also drop the error message, if
you’re using an error handler (see B_E) that writes to stdout or stderr.
[function]: The function to execute.
[param p]: An arbitrary number of function parameters.

10

returns: Sets the status code of the called function, but doesn’t print anything.
B_E is called on errors.
@B_E

b_assertLastPipes [error message] blib/b_assertLastPipes
Assert that the last pipe statements all had a zero exit code.
An alternative to set -o pipefail.
[error message]: Optional error message to use for B_E in case the assertion
fails.
returns: Nothing. Assertion failures trigger B_E.
@B_E

b_defaultMessageHandler [message type] [message] [first part] [last
part] blib/b_defaultMessageHandler
Handles the given message by printing information to stdout and errors to stderr.
This is the default message handler used by blib. It can be changed by
b_setMessageHandler.
Message handler implementations must support at least the parameters of this
function, but may add additional parameters. If an handler implementation does
not support partial messages (i.e. the [first part] and [last part] parameters), it
should be chained to a b_cachingMessageHandler.
[message type]: 0=informational message, 1=error message.
[message]: String representing the message.
[first part]: If set to 0, assume that the given message is the first part of an
overall chain of messages (default: 0).
[last part]: If set to 0, assume that the given message is the final part of an
overall chain of messages (default: 0).
returns: Nothing. Never causes errors.

b_cachingMessageHandler [message handler] [message type] [message]
[first part] [last part] blib/b_cachingMessageHandler
A message handler implementation which caches partial messages for a receiving
message handler that cannot handle them until they are completed.
Use b_initCachingMessageHandler && b_setMessageHandler "b_cachingMessageHandler [your message handler]"
to set your receiving message handler as message handler to cache messages for.
This implementation uses the b_getDefaultMessageHandlerIntermediate as
separator between partial messages.
[message handler]: The function implementing the receiving message handler. It
must handle the [message type] and the [message].
[message type]: See b_defaultMessageHandler.
[message]: See b_defaultMessageHandler.
[first part]: See b_defaultMessageHandler.
[last part]: See b_defaultMessageHandler.
returns: Nothing. Never causes errors.

11

b_initCachingMessageHandler [maximummessage type] blib/b_initCachingMessageHandler
Initializes a new cache for a b_cachingMessageHandler. This function must be
called at least once before using b_cachingMessageHandler.
[maximum message type]: Maximum message type for which to allocate caches
(default: 1 –> allocate caches for 0..1/info..error).
returns: Nothing.
@B_E

b_setDefaultMessageHandlerIntermediate [intermediate] blib/b_setDefaultMessageHandlerIntermediate
[intermediate]: String to use as intermediate between two message parts with
b_defaultMessageHandler, i.e. the resulting message should be [part 1][interme-
diate][part 2]. Default: Space.
returns: Nothing.

b_getDefaultMessageHandlerIntermediate blib/b_getDefaultMessageHandlerIntermediate
Get the currently configured intermediate string for the b_defaultMessageHandler.
returns: The intermediate String.

b_setDefaultMessageHandlerPrefix [message type] [prefix]
blib/b_setDefaultMessageHandlerPrefix
Set the prefix to use for the default message handler and the given message type.
[message type]: 0=informational message, 1=error message.
[prefix]: A string to prefix all messages of the given type.
returns: Nothing.

b_getDefaultMessageHandlerPrefix [message type] blib/b_getDefaultMessageHandlerPrefix
Get the prefix used for the default message handler and the given message type.
[message type]: 0=informational message, 1=error message.
returns: The currently configured prefix.

b_info [message] [first part] [last part] [message handler param 1] . . .
[message handler param n] blib/b_info
Send an informational message to the user. The message is dispatched via the
currently configured message handler (default: b_defaultMessageHandler).
[message]: to send
[first part]: If set to 0, assume that the given message is the first part of an
overall chain of messages (default: 0).
[last part]: If set to 0, assume that the given message is the final part of an
overall chain of messages (default: 0).
[message handler param i]: Arbitrary parameters to pass to the currently config-
ured message handler (cf. b_setMessageHandler).
returns: Nothing, always sets a zero exit code.

b_error [message] [first part] [last part] [message handler param 1]
. . . [message handler param n] blib/b_error

12

Send an error message to the user without erroring out. The message
is dispatched via the currently configured message handler (default:
b_defaultMessageHandler).
99.9% of all users will want to use the combination of B_ERR and B_E for
proper error handling instead.
[message]: to send
[first part]: If set to 0, assume that the given message is the first part of an
overall chain of messages (default: 0).
[last part]: If set to 0, assume that the given message is the final part of an
overall chain of messages (default: 0).
[message handler param i]: Arbitrary parameters to pass to the currently
configured message handler (cf. b_setMessageHandler).
returns: Nothing, always sets a zero exit code.

b_setMessageHandler [handler] blib/b_setMessageHandler
Set the handler used to send messages to the user. By default, b_defaultMessageHandler
is used.
[handler]: Function to handle the messages. See b_defaultMessageHandler for
the requirements.
returns: Nothing.

b_getMessageHandler blib/b_getMessageHandler
Get the currently configured message handler.
returns: The message handler.

b_enforceUser [user name] blib/b_enforceUser
enforce that the user is the given one and if not, exit the script and set a non-zero
status code
[user name]: user name to check against
returns: nothing
@B_E

b_isFunction [potential function name] blib/b_isFunction
check whether the given function is defined
returns: zero exit code if the function is defined

b_getBlibModules blib/b_getBlibModules
get all available blib module names as a newline-separated list
returns: all available blib module names as newline-separated list

b_listContains [list] [entry] blib/b_listContains
check whether the given list contains the given entry
[list]: newline-separated list
[entry]: string to be found on a single line within the list (equality check)

13

returns: a zero exit code if the list contains the entry; a non-zero exit code
otherwise

b_deps [dependency 1] . . . [dependency n] blib/b_deps
Assert that the given dependencies are met and error out with B_E otherwise.
This function is meant to be used by modules or scripts to declare all of their
dependencies.
[dependency i]: Command that is absolutely required to run this script.
returns: Nothing. Errors out with B_E, if dependencies are not met.
@B_E

b_import [module] [double import] blib/b_import
Import the given module into the current context.
[module]: relative path of the module to import (relative to the blib/lib root
directory)
[double import]: if set to 1, import the given module regardless of whether it
was imported before (default: 0 = don’t do duplicate imports)
returns: nothing, errors out if the import failed and sets a non-zero status code;
if the import was successful or previously done, a zero exit code is set
@StateChanging
@B_E

b_generateStandalone [function] [module dep 1] .. [module dep n] -
[function dep 1] .. [function dep d] - [function param 1] .. [function
param p] blib/b_generateStandalone
Create a standalone variant of blib in a single file running the given function
when called (sourcing that file will only make the functions available) and print
that file to stdout.

The current execution state is not retained.
[function]: The function to call when the generated script is executed. All script
parameters when calling [output file] are passed to this function. The function
must be available in the current context.
[module dep i]: Names of the modules to include in the standalone file. They do
not need to be imported. They are loaded in the specified order.
[-]: Dash used as separator between the various types of arguments. If none is
provided, all parameters are assumed to be modules.
[function dep j]: An arbitrary number of functions that need to be added in
order to satisfy the dependencies of the function to call (e.g. if function A is
meant to be called, but uses function B internally, you’ll have to pass B as one
of its dependencies). Dependencies that can be found in added modules should
not be added.
[function param p]: Static parameters to add to the function as single String.
Dynamic parameters should be passed to the generated script.
returns: Sets a zero exit code and prints the output file to stdout on success.

14

May error out otherwise.
@B_E

b_execFuncInCurrentContext [function] [module dep 1] ..
[module dep n] - [function param 1] .. [function param p]
blib/b_execFuncInCurrentContext
Execute the given function in the current context.
[function]: The function to execute.
[module dep i]: Names of the modules required by the function. They do not
need to be imported by the function itself.
[-]: A dash as separator character between the various parameters.
[function param p]: An arbitrary number of function parameters.
returns: Whatever the executed function returns.

b_execFuncAs [user] [function] [module dep 1] .. [module dep n] -
[function dep 1] .. [function dep d] - [function param 1] .. [function
param p] blib/b_execFuncAs
Attempt to execute the Bash function as the given user.

Whether or not this works highly depends on the underlying OS and its (sudo
& su) configuration. In particular this function may cause further execution to
wait for the user to type in the password of the requested user.

If the given user is identical to the current user, b_execFuncAs may decide to
run the function in the current context. Otherwise it may run in a different
process, i.e. all initialization and state may be lost. Thus make sure to create
any required state within your function.
[user]: User to execute the function as (default: root).
[function]: The function to execute.
[module dep i]: Names of the modules required by the function. They do not
need to be imported by the function itself. They are loaded in the specified
order.
[-]: A dash as separator character between the various parameters.
[function dep j]: An arbitrary number of functions that need to be added in
order to satisfy the dependencies of the function to call (e.g. if function A is
meant to be called, but uses function B internally, you’ll have to pass B as one
of its dependencies). Dependencies that can be found in added modules should
not be added.
[function param p]: An arbitrary number of function parameters.
returns: Whatever the executed function returns. A non-zero exit code may
also indicate that the user switch didn’t work. In particular B_E is not called if
the executed function returns an error.
@B_E

b_isModule [module name] blib/b_isModule
Test whether the given name represents a blib module name.

15

returns: sets a zero exit code if the given name is a valid module name

args
Stateful argument parser for bash.

Regular arguments and options are parsed via b_args_parse. Afterwards they
can be retrieved via b_args_get and b_args_getOption. Options may have
parameters, can be repeated and combined.

The module can also check the correctness of options. All remaining correctness
checks (e.g. for regular or option parameters) are left to the user of this module.

Conventions:

• Options always start with - and may occur everywhere.
• Single character options may be combined, e.g. -ajh will be considered the

same as -a -j -h. Long options such as --option cannot be combined.
Recommendation: Use long options for those options which require param-
eters and single letter options for everything else.

• Everything after a space-separated double dash (--) is not considered an
option, but a regular argument.

Copyright (C) 2020 David Hobach LGPLv3
0.9

Dependencies

no dependencies

Imports

types

Global Variables

B_ARGS args/B_ARGS
Array of regular/non-option arguments in the order of their appearance.
Instead of using it directly, it is recommended to use b_args_get instead. The
array may be removed in future versions.

B_ARGS_OPTS args/B_ARGS_OPTS
Map of options. [option]_[index] is used as key with [index] starting at
zero. The values are the option parameters (if any). Multiple option parameters
are separated by tabs.
The latter separator can be changed via b_args_setOptionParamSeparator
before calling b_args_parse.
The index will only increase if options are repeated.

16

Instead of using it directly, it is recommended to use b_args_getOption instead.
The array may be removed in future versions.

Functions

b_args_setOptionParamSeparator [separator] args/b_args_setOptionParamSeparator
Set the separator for multiple option parameters.
[separator]: String to use as separator for multiple option parameters.
returns: Nothing.

b_args_getOptionParamSeparator args/b_args_getOptionParamSeparator
Get the separator for multiple option parameters.
returns: Nothing.

b_args_init [allow flag] [option 1] [option param count 1] . . . [option
n] [option param count n] args/b_args_init
Initialize the args module. It is recommended to call this function before using
this module, if you want to achieve any non-default behaviour.
[allow flag]: If set to 0, assume that non-specified options do not have any
parameters (default). If set to 1, enforce that only the given options are allowed
and otherwise error out.
[option i]: An allowed option including its leading - prefix.
[option param count i]: Number of expected parameters for that option. The
parameters must directly follow the option. If less parameters are found, the
parser will error out.
returns: Nothing, always sets a zero exit code.
@StateChanging
@B_E

b_args_parse [arguments] args/b_args_parse
Parse the given arguments.
Call b_args_init before parsing, if you desire any non-default parsing behaviour.
[arguments]: The arguments meant to be parsed, usually “$@”.
returns: Sets a zero exit code on success and calls B_E otherwise.
@StateChanging
@B_E

b_args_assertOptions [option 1] . . . [option n] args/b_args_assertOptions
Assert that the parsed options contain only the given allowed options (or less).
[option i]: Option to check against.
returns: Sets a zero exit code, if the current parsed state contains only allowed
options and errors out with B_E otherwise. Prints a list of invalid options in
the error case.
@B_E

17

b_args_get [index] [fallback] args/b_args_get
Get the argument at the given index.
[index]: Index of the argument to retrieve, starting at 0.
[fallback]: Value to return, if the given index was provided as empty argument
or is missing. Default: empty String
returns: The argument at the given index. An empty (existing!) argument will
cause the fallback to be returned with a zero exit code. If no argument was
found at that index, a nonzero exit code is set and the fallback is returned.

b_args_getInt [index] [fallback] args/b_args_getInt
Convenience wrapper for b_args_get that also checks the type of the argument
to be an integer.
returns: See b_args_get. Also sets a nonzero exit code, if the argument is not
an integer.

b_args_getCount args/b_args_getCount
Get the number of arguments.
returns: Number of arguments.

b_args_getOption [option] [fallback] [repeat index] [parameter index]
args/b_args_getOption
Check whether the given option is set and retrieve its parameter, if it was.
[option]: String defining the option, e.g. --option or -a.
[fallback]: Value to return if the option did not have any parameter or was not
set. Default: empty String
[repeat index]: Index of the option to retrieve, if the option was repeated
multiple times (default: 0 = first option).
[parameter index]: Index of the option parameter to retrieve, starting at 0 (de-
fault: return all option parameters, separated by b_args_getOptionParamSeparator).
returns: The option parameter, if the option was set. The fallback is returned
and a zero exit code is set, if the option was set, but an empty (existing!)
parameter was provided. A nonzero exit code indicates that the option was not
set (the fallback is still returned).

b_args_getOptionInt [option] [fallback] [repeat index] [parameter
index] args/b_args_getOptionInt
Convenience wrapper for b_args_getOption that also checks the type of the
option to be an integer.
returns: See b_args_getOption. Also sets a nonzero exit code, if the option is
not an integer.

b_args_getOptionCount args/b_args_getOptionCount
Get the number of options that were set.
returns: Number of options (incl. repeated options).

18

b_args_getAll [exclude regex 1] . . . [exclude regex n] args/b_args_getAll
Retrieve all arguments (excl. options).
[exclude regex i]: Arguments matching any of the given regular expressions are
excluded from the return value.
returns: All arguments as a single escaped string that can be used to pass
them to functions or other scripts (without quotes).

b_args_getAllOptions [exclude regex 1] . . . [exclude regex n]
args/b_args_getAllOptions
Retrieve all options.
[exclude regex i]: Options matching any of the given regular expressions are
excluded from the return value.
returns: All options as a single escaped string that can be used to pass them
to functions or other scripts (without quotes).

arr
Collection of array related functions.

Copyright (C) 2018 David Hobach LGPLv3
0.2

Dependencies

no dependencies

Imports

no imports

Functions

b_arr_join [delimiter] [array] arr/b_arr_join
Join the given array; elements are separated with the given delimiter. The array
is not checked to exist.
[delimiter]: String to use as delimiter.
[array]: Expanded array to join, e.g. “${arr[@]}”.
returns: Joined version of the array. The exit code is always zero.

b_arr_toList [array] arr/b_arr_toList
Create a newline-separated list from the given array.
[array]: Expanded array to join, e.g. “${arr[@]}”.
returns: List version of the array. The exit code is always zero.

b_arr_contains [element] [array] arr/b_arr_contains
Check whether an array contains an element.
[element]: element to check for its existence in the array

19

[array]: expanded array to check, e.g. “${arr[@]}”
returns: an exit code of 0, if the element was found and 1 otherwise

b_arr_mapsAreEqual [map spec 1] [map spec 2] arr/b_arr_mapsAreEqual
Check whether the two given maps/associative arrays are equal.
[map spec 1]: First map specification to check. Since maps cannot be
passed directly to functions in Bash 4.2, you’ll have to use "$(declare -p
"yourmap")" instead.
[map spec 1]: Second map specification to check.
returns: an exit code of 0, if the maps are equal and 1 otherwise; B_E is only
triggered on programming errors
@B_E

cdoc
Generate code documentation in many formats (e.g. html, pdf, manpage, . . .)
from code comments.

Lines applicable for the documentation in your code are assumed to match static
(configurable) regular expressions. These lines are then fed to pandoc in order
to generate a single html page (or pdf, manpage, . . .) as documentation. If
no conversion is required (input format = desired output format), pandoc is
bypassed.

It should be possible to use this way of generating code documentation with
most programming languages (incl. bash). The defaults however are set for bash
and the blib way of documenting its code, i.e. you’ll have to use the getters and
setters of this module if you want something different. For instance the default
is to check for lines starting with #+ (a special bash comment line) and add
everything afterwards to the output documentation.

Various callback functions can be used to add content to the output of
b_cdoc_generate. See the documentation of that function for details.

If you wish to create code documentation for your bash project in blib style,
please use ../util/blib-cdoc.

Copyright (C) 2020 David Hobach LGPLv3
0.6

Dependencies

cat
mktemp
mv
rm

20

https://pandoc.org/

Imports

fs

Functions

b_cdoc_setExtractionRegex [regex] cdoc/b_cdoc_setExtractionRegex
Set the regular expression used to check for matching lines in code files. The
first match (${BASH_REMATCH[1]}) is added to the documentation output.
returns: nothing
@StateChanging

b_cdoc_getExtractionRegex cdoc/b_cdoc_getExtractionRegex
See the setter.
returns: The property that was set.

b_cdoc_setFileCallback [callback function name] cdoc/b_cdoc_setFileCallback
Set the function to call by b_cdoc_generate exactly once before starting to
process a source code file.

The callback function can be used to filter certain files from processing or add
them as-is.
It should be declared as follows:

callback_function_name [file] [output format]
[file]: The next file to process is passed here.
[output format]: chosen output format
returns: Nothing. Possible exit codes:

0 = continue normal processing (default)
1 = include the file as-is without any processing
2 = silently ignore that file / do not process it
other = abort all further processing with an error

returns: nothing
@StateChanging

b_cdoc_getFileCallback cdoc/b_cdoc_getFileCallback
See the setter.
returns: The property that was set.

b_cdoc_setDocumentBeginCallback [callback function name]
cdoc/b_cdoc_setDocumentBeginCallback
Set the function to call by b_cdoc_generate exactly once right before it starts
generating the output document.

The callback function should be declared as follows:

21

callback_function_name [document output file] [document output format]
[document output file]: path to the document output file

(may not exist and should not be written to)
[document output format]: chosen output format
returns: whatever should be added at the beginning of the output document;

a non-zero exit code will abort further processing

returns: nothing
@StateChanging

b_cdoc_getDocumentBeginCallback cdoc/b_cdoc_getDocumentBeginCallback
See the setter.
returns: The property that was set.

b_cdoc_setPostProcessingCallback [callback function name]
cdoc/b_cdoc_setPostProcessingCallback
Set the function to call by b_cdoc_generate each time a code file was fully
processed.

The callback function should be declared as follows:

callback_function_name [processed input] [input file] [document output format]
[processed input]: Everything that was found to match the

extraction regex in the [input file] by b_cdoc_generate.
[input file]: The original input file.
[document output format]: chosen output format
returns: whatever should be added to the output document for the

given input file (usually the processed input or some filtered
version of it); a non-zero exit code will abort further processing

returns: nothing
@StateChanging

b_cdoc_getPostProcessingCallback cdoc/b_cdoc_getPostProcessingCallback
See the setter.
returns: The property that was set.

b_cdoc_setDocumentEndCallback [callback function name]
cdoc/b_cdoc_setDocumentEndCallback
Set the function to call by b_cdoc_generate exactly once right after it generated
the output document.

The callback function should be declared as follows:

callback_function_name [document output file] [document output format]
[document output file]: path to the document output file

(may not exist and should not be written to)
[document output format]: chosen output format

22

returns: whatever should be added to the end of the output
document; a non-zero exit code will abort further processing

returns: nothing
@StateChanging

b_cdoc_getDocumentEndCallback cdoc/b_cdoc_getDocumentEndCallback
See the setter.
returns: The property that was set.

b_cdoc_setBlockCallback [callback function name] cdoc/b_cdoc_setBlockCallback
Set the function to call by b_cdoc_generate each time it hits a block of
matching comments.

The callback function should be declared as follows:

callback_function_name [block] [input file] [document output format]
[block]: The full block of documentation that was identified.
[block counter]: Number of blocks previously seen.
[input file]: The original input file.
[document output format]: chosen output format
returns: whatever should be added instead of the given block;

a non-zero exit code will abort further processing

returns: nothing
@StateChanging

b_cdoc_getBlockCallback cdoc/b_cdoc_getBlockCallback
See the setter.
returns: The property that was set.

b_cdoc_generate [input files] [output file] [output format] [additional
pandoc options] cdoc/b_cdoc_generate
Generate a documentation file from the given list of input files or directories.

The concept is really simple: Each block of documentation will trigger the
b_cdoc_getBlockCallback exactly once and you may add additional parsing
logic on a block-wise level.
The following example will call the block callback twice (once with three block
1 lines and once with two block 2 lines):

#+block 1
#+block 1
#+block 1

#say hello
echo "hello world"

23

#+block 2
#+block 2

The other callback functions may be used for further processing.

[input files]: Newline-separated list of files or directories to generate the docu-
mentation from. The given order is respected; directories are recursively searched
for files. It is currently assumed that these files are encoded in UTF-8.
[output file]: Path to the documentation file to generate. Should not exist.
[output format]: The target format of the documentation to generate. See
pandoc for a list of available output formats. If none is specified, pandoc is
bypassed and the input format is chosen as output format. Passing “pandoc”
will let pandoc decide based on the extension of the output file.
[additional pandoc options]: All remainining parameters will be directly passed
to pandoc. If none are provided, -s is implicitly added as default.
returns: Sets a non-zero exit code and exits the script on errors. Output from
pandoc and other calls may be printed. Otherwise nothing is returned.
@B_E

b_cdoc_generateBlibStyle [input files] [output file] [output format]
[delete existing] cdoc/b_cdoc_generateBlibStyle
A convenience wrapper for b_cdoc_generate which sets various reasonable
parameters depending on the output format.
[input files]: see b_cdoc_generate
[output file]: where to write the generated output documentation to
[output format]: currently one of raw|html|pdf|man is supported (default: raw)
[delete existing]: whether or not to delete previously created output files (default:
true/0); if set to false (1), the function will error out if a previously created file
was found
returns: full path to the created documentation file on success; otherwise the
function may error out
@B_E

Callback Functions b_cdoc_cbPrintNewline

cdoc/b_cdoc_cbPrintNewline
Prints a newline character.
returns: nothing

b_cdoc_cbPrintFirstParam [param]

cdoc/b_cdoc_cbPrintFirstParam
Prints the first parameter.
[param]: The parameter to print.
returns: the first parameter

24

https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/

daemon
Module providing access to a single background process providing some ser-
vice (daemon). Exiting the foreground control process will not terminate the
background process. Attempting to start multiple background daemons will be
prevented in a thread-safe way.

Each background process is assumed to implement a daemon_main function and
must be identified by a unique String.

If you need to exchange data with the background service, please have a look at
the multithreading/ipcv or multithreading/ipcm modules.

Known Issue:
Since the daemon cannot detach from its session via setsid in bash, the daemon
will remain in the process group of its parent. So killing the parent with
e.g. Ctrl-C will cause the parent group including the daemon to terminate. As a
workaround, users may either ignore SIGINT requests or make sure the parent
exits as soon as possible (recommended).

Copyright (C) 2019 David Hobach LGPLv3
0.5

Dependencies

kill
mkdir
mktemp
rm
umask

Imports

fd
multithreading/mtx
proc

Global Variables

B_DAEMON_ID daemon/B_DAEMON_ID
Contains the ID of the daemon, if and only if the current process is the daemon
process.

Functions

b_daemon_init [quiet flag] [main name] [stdout file] [stderr file] [umask
setting] daemon/b_daemon_init
Init the module paramters. It is necessary to call this method before using any
other of this module unless you want to use the default paramters.

25

[quiet flag]: If set to 0 (default), don’t print anything to stdout during the
execution of start|stop|restart|status. Otherwise use b_info to print informational
messages.
[main name]: Name of the main loop function to execute in the background
process. Returning from that function will exit the background process. Default:
daemon_main
[stdout file]: Where the background process should write its stdout stream to
(default: /dev/null). Lines are appended.
[stderr file]: Where the background process should write its stderr stream to
(default: /dev/null). Lines are appended.
[umask settings]: The umask settings to apply to the daemon (default: 0).
returns: Nothing.
@StateChanging

b_daemon_start [id] [arg 1] . . . [arg n] daemon/b_daemon_start
Start the background process.
If you need to start it as a different user, simply run this function as a different
user with e.g. (b_execFuncAs)[#b_execFuncAs]. Please keep in mind that
control processes must have the permission to send signals to the daemon PID
though.
[id]: Unique identifying String of the daemon to distinguish it from others.
[arg i]: An arbitrary number of arguments which can be passed to the main loop.
returns: Sets a zero exit code on success. Otherwise sets a non-zero exit code.
In particular B_E is called, if the daemon is already running.
@B_E

b_daemon_stop [id] [termination signal] [kill timeout] dae-
mon/b_daemon_stop
Stop the background process.
[id]: Unique identifying String of the daemon to distinguish it from others.
[termination signal]: A number or string specifying the signal to send to the
daemon (default: 15 / SIGTERM). See kill -l for an overview.
[kill timeout]: Time in seconds after which the background process will be
killed, if it remains unresponsive to the termination signal (default: 0 = wait
indefinitely).
returns: Sets a zero exit code, if the daemon terminated by itself. An exit code
of 2 indicates that the daemon had to be killed. An exit code of 3 means that it
wasn’t running. B_E is called on unexpected errors.
@B_E

b_daemon_restart [id] [termination signal] [kill timeout] [arg 1] . . .
[arg n] daemon/b_daemon_restart
Restart the background process.
[id]: Unique identifying String of the daemon to distinguish it from others.
[termination signal]: See b_daemon_stop.

26

[kill timeout]: See b_daemon_stop.
[arg i]: An arbitrary number of arguments which can be passed to the main loop.
returns: See b_daemon_start.
@B_E

b_daemon_statusPid [id] daemon/b_daemon_statusPid
Check the status of the background process.
Doesn’t print informational messages to stdout.
[id]: Unique identifying String of the daemon to distinguish it from others.
returns: The PID and sets a zero exit code, if the daemon is running and a
non-zero exit code otherwise. B_E is only called on exceptional errors.
@B_E

b_daemon_status [id] daemon/b_daemon_status
Check the status of the background process and print informational messages to
stdout (if configured).
[id]: Unique identifying String of the daemon to distinguish it from others.
returns: Sets a zero exit code, if the daemon is running and a non-zero exit
code otherwise. B_E is only called on exceptional errors.
@B_E

b_daemon_getPid [id] daemon/b_daemon_getPid
Get the process ID of the background process.
[id]: Unique identifying String of the daemon to distinguish it from others.
returns: The process ID and sets a zero exit code, if it could be obtained. Please
note that the process may be dead anyway (use b_daemon_statusPid for that).
Otherwise a non-zero exit code is set. B_E is only called on exceptional errors.
@B_E

b_daemon_sendSignal [id] [signal] daemon/b_daemon_sendSignal
Send a signal to the daemon.
For termination signals, please use b_daemon_stop instead.
[id]: Unique identifying String of the daemon to distinguish it from others.
[signal]: A number or string specifying the signal to send to the daemon. See
kill -l for an overview.
returns: Sets a zero exit code, if the daemon was running and a non-zero exit
code otherwise. B_E is only called on exceptional errors.
@B_E

date
Collection of date and time related functions.

Copyright (C) 2018 David Hobach LGPLv3
0.3

27

Dependencies

date

Imports

no imports

Functions

b_date_add date [time] [unit] [format] [utc flag] date/b_date_add
Add the given number of seconds to the given date.
[date]: date to add seconds to; the format must be understood by the Unix date
utility
[time]: amount of time to add
[unit]: unit of the time to add, may be one of d (days), h (hours) m (minutes), s
(seconds, default)
[format]: output format of the date, in Unix date notation (default: use the
localized output)
[utc flag]: if set to 0, use UTC as time zone if not specified for the input and
use it for the output (default: 1 = local time zone)
returns: The input date with the given number of seconds added, in the
requested format; returns a non-zero exit code on errors.
@B_E

b_date_addDays date [days] [format] [utc flag] date/b_date_addDays
Convenience wrapper to b_date_add with days.
[date]: See b_date_add.
[days]: Number of days to add.
[format]: See b_date_add.
[utc flag]: See b_date_add.
returns: See b_date_add.
@B_E

b_date_diff [date 1] [date 2] [unit] date/b_date_diff
Get the amount of time between the two dates, i.e. [date 2] - [date 1].
[date 2], [date 1]: the two dates to subtract; the time part is assumed to be
identical if not specified within the dates
[unit]: unit of the result, may be one of d (days), h (hours) m (minutes), s
(seconds, default)
returns: The amount of time between the given two dates [date 2] - [date 1],
rounded down. Returns a non-zero exit code on errors.
@B_E

b_date_getFileModAge [file] [unit] date/b_date_getFileModAge
Get the time that passed since the last modification of the file.

28

[file]: Full path to the file to check.
[unit]: unit of the time to retrieve, may be one of d (days), h (hours) m (minutes),
s (seconds, default)
returns: The amount of time in the given unit since the last modification. May
be rounded down. Sets a non-zero exit code on errors.
@B_E

delay
Simplistic module to delay commands to a future time.
Requires polling.

All timestamps in this module must be integers and a larger timestamp must
denote a time after a smaller timestamp.

Copyright (C) 2019 David Hobach LGPLv3
0.3

Dependencies

no dependencies

Imports

no imports

Global Variables

B_DELAY_EXECUTED delay/B_DELAY_EXECUTED
The number of commands executed during the last invocation of
b_delay_execute.

Functions

b_delay_to [timestamp] [command] delay/b_delay_to
Delay the given command to be executed at the given time.
[timestamp]: An integer timestamp (e.g. $SECONDS, Unix timestamp in
s/ms/ns, . . .).
[command]: The command to execute at the given time.
returns: Nothing.
@StateChanging

b_delay_execute [timestamp] delay/b_delay_execute
Execute all commands which are due at the given time.
[timestamp]: Integer timestamp representing the current point in time.
returns: Nothing. The exit code is equal to the number of commands with a
non-zero exit code. B_DELAY_EXECUTED is updated with the number of

29

commands executed.
@StateChanging

b_delay_getCommandAt [timestamp] delay/b_delay_getCommandAt
Get the set of commands to be executed at the given point in time.
[timestamp]: Integer timestamp denoting the time for which to retrieve the
commands.
returns: The commands to execute at that time.

dmcrypt
Abstraction layer for cryptsetup / dm-crypt.

Features:
- automatic management of dm-crypt devices
- password support for non-tty environments

Copyright (C) 2020 David Hobach LGPLv3
0.6

Dependencies

dirname
head
mkdir
readlink

Imports

hash
ui

Functions

b_dmcrypt_init [ui mode] dmcrypt/b_dmcrypt_init
Initialize this module. This function must be called at least once before using
any of the other functions.
[ui mode]: How to request a password from the user: auto|gui|tty (default: auto).
returns: Nothing.
@StateChanging
@B_E

b_dmcrypt_getMapperName [path] dmcrypt/b_dmcrypt_getMapperName
Get the name of the dm-crypt mapper for a given path.
[path]: Full path to an encrypted file.
returns: A mapper name. This doesn’t necessarily mean that the encrypted
container is open. Use b_dmcrypt_isOpen for that.
@B_E

30

b_dmcrypt_createLuks [path] [size] [fs type] [entropy source]
[password prompt] [dm-crypt option 1] . . . [dm-crypt option n]
dmcrypt/b_dmcrypt_createLuks
Create an encrypted luks container file at the given location.
This function may request a password from the user and usually requires root
access rights.
[path]: Full path to the encrypted file to create.
[size]: Filesystem size in bytes to create. Supported suffixes: b 512, kB 1000, K
1024, MB 10001000, M 10241024, GB 100010001000, G 102410241024
[fs type]: Filesystem to create inside the encrypted container. If none is specified
(default), no file system is created.
[entropy source]: Source of entropy to use for the file setup (default:
/dev/urandom).
[password prompt]: Prompt string to ask the user for his password (optional).
[dm-crypt option i]: These options are directly passed to cryptsetup.
returns: Sets a zero exit code on success and errors out with B_E otherwise.
@B_E

b_dmcrypt_open [path] [mount point] [output var] [password prompt]
[dm-crypt option 1] . . . [dm-crypt option n] dmcrypt/b_dmcrypt_open
Open/Decrypt the given container and optionally mount it.
[path]: Full path to the encrypted file.
[mount point]: Where to mount the decrypted data (optional). If no mount
point is specified, it will not be mounted.
[output var]: The name of the variable to write the created device to (optional).
[password prompt]: Prompt string to ask the user for his password (optional).
[dm-crypt option i]: These options are directly passed to cryptsetup.
returns: Sets a zero exit code on success.
@B_E

b_dmcrypt_close [path] [dm-crypt option 1] . . . [dm-crypt option n]
dmcrypt/b_dmcrypt_close
Close the given encrypted container.
[path]: Full path to the encrypted file.
[dm-crypt option i]: These options are directly passed to cryptsetup.
returns: A zero exit code on success. The exit code may also be zero for
non-existing or already closed containers.
@B_E

b_dmcrypt_isOpen [path] dmcrypt/b_dmcrypt_isOpen
Check whether the given encrypted container is open (not necessarily mounted).
[path]: Full path to the encrypted file.
returns: Sets a zero exit code, if and only if the container is open. B_E is only
called for exceptional errors.
@B_E

31

fd
Collection of file descriptor related functions.

Copyright (C) 2021 David Hobach LGPLv3
0.3

Dependencies

no dependencies

Imports

no imports

Functions

b_fd_getOpen [pid] fd/b_fd_getOpen
Retrieve all open file descriptors for the given PID.
[pid]: process ID (default: $$)
returns: Newline-separated list of open file descriptor numbers; a non-zero exit
code indicates that the process could not be found.

b_fd_closeNonStandard fd/b_fd_closeNonStandard
Close all non-standard file descriptors (i.e. those > 2) held by the current process.
returns: Nothing. B_E is called on unexpected errors.
@B_E

b_fd_closeAll fd/b_fd_closeAll
Close all file descriptors held by the current process.
returns: Nothing. B_E is called on unexpected errors.
@B_E

flog
Flexible log writer for bash.

Features:
- arbitrary output support (files, network streams, stdout, stderr, . . .) in a
user-defined format
- optional log file reduction
- optional thread safety
- support for partial messages

In order to log to the system log, please use the logger command instead. This
library is mostly meant for application logs handled in a more custom manner.

Exact format of log entries:

32

[header][message]
[header]: Can be arbitrarily defined in the

respective callback function. If nothing
is defined, the below default header
is used:

[default header] = '[default date] '
[default date]: current date in the format as used

by date +"%F %T %Z" (the format can be changed)

Copyright (C) 2020 David Hobach LGPLv3
0.6

Dependencies

cat
date
mkdir
mktemp
readlink
rm
tail

Imports

fs
hash
multithreading/mtx

Global Variables

B_FLOG_SEV flog/B_FLOG_SEV
Global map for human readable severities which may be used by users of this
script.
It was inspired by the severities of RFC5424.
Currently supported values: emergency|alert|critical|crit|error|err|warning|warn|notice|informational|info|debug

Functions

b_flog_printSeverity [severity] flog/b_flog_printSeverity
[severity]: see b_flog_init
Print the given severity in a way for logging. This function is meant to be used
as building block for header functions.
returns: a printed version of the given severity for logging

b_flog_close flog/b_flog_close
close the currently open log; is automatically called, but users may want to call it
themselves to force the respective file descriptor to be closed before the program

33

is ended
returns: nothing
@StateChanging

b_flog_init [log file name] [header callback function] [log reduction
lines] [thread safe] [intermediate] flog/b_flog_init
Initialize this log writer. This function must be called before any others.
[log file name]: name of the log file to write to; special files such as /dev/stdout,
/dev/stderr (default), /dev/tcp, /dev/udp are supported if your bash version
supports them; the file doesn’t need to exist
[header callback function]: optional name of the function to be called whenever
a new log entry is generated; the function must be defined as follows:

[header callback function] [severity]
[severity]: see [b_flog_log](#b_flog_log)
returns: the full header meant to be used for the current moment in time

with the given severity (without knowing the message details)
and sets a non-zero exit code on errors; errors may cause the
message to be logged without header

[log reduction lines]: if set to a positive integer, reduce the log file ap-
proximately to that number of lines during logging (default: 3000) - see
b_flog_setLogReductionLinesApprox for details; this option has no effect on
non-file outputs (stdout, network output, . . .)
[thread safe]: Whether calls to b_flog_log should be thread safe (0) or not
(default: 1 = not thread safe).
[intermediate]: String to use as intermediate separator when chaining partial log
messages (default: b_getDefaultMessageHandlerIntermediate).
returns: sets a non-zero exit code on errors and may exit the script
@StateChanging
@B_E

b_flog_log [message] [severity] [first part] [last part] flog/b_flog_log
Log the given message with the given optional severity.
If the [thread safe] variant was chosen, may wait for other log sources to write
their message first.
[message]: message to log
[severity]: users may pass arbitrary numbers or even Strings here, but it is
recommended to stick to the priorities defined in $BLIB_FLOG_SEV (default:
${B_FLOG_SEV[“info”]})
[first part]: If set to 0, assume that the given message is the first part of an
overall chain of messages (default: 0).
[last part]: If set to 0, assume that the given message is the final part of an
overall chain of messages (default: 0). Please note that other threads may be
blocked from writing to the output, if the last message of a chain was not yet
received.

34

returns: Sets a non-zero exit code on errors. B_E is only called, if logging
failed entirely.
@B_E

b_flog_messageHandler [message type] [message] [first part] [last
part] flog/b_flog_messageHandler
A message handler implementation that handles messages by logging them via
b_flog_log.
Issues with the logging system itself (e.g. log file not writable) are written to
stderr.
If you don’t want to log all messages and/or handle some of them differently,
you can simply write a wrapper for this function.
[message type]: See b_defaultMessageHandler.
[message]: See b_defaultMessageHandler.
[first part]: See b_defaultMessageHandler.
[last part]: See b_defaultMessageHandler.
returns: Nothing. Never causes errors.

b_flog_getDateFormat flog/b_flog_getDateFormat
Get the date format used for the header by this log writer (see “man date” for
explanations).
returns: see above

b_flog_setDateFormat [format string] flog/b_flog_setDateFormat
Set the date format used for the header by this log writer (see “man date” for
explanations).
returns: nothing
@StateChanging

b_flog_getLogReductionLinesLowerBound flog/b_flog_getLogReductionLinesLowerBound
Get the number of lines that the log file will at least have after a log file
reduction.
returns: see above

b_flog_getLogReductionLinesUpperBound flog/b_flog_getLogReductionLinesUpperBound
Get the maximum number of lines that the log file will have before it is reduced.
returns: see above

b_flog_setLogReductionLinesLowerBound [bound] flog/b_flog_setLogReductionLinesLowerBound
Set the number of lines that the log file will at least have after a log file
reduction.
[bound]: number of lines to use for that bound
returns: nothing
@StateChanging

35

b_flog_setLogReductionLinesUpperBound flog/b_flog_setLogReductionLinesUpperBound
Set the maximum number of lines that the log file will have before it is reduced.
[bound]: number of lines to use for that bound
returns: nothing
@StateChanging

b_flog_setLogReductionLinesApprox [line count] flog/b_flog_setLogReductionLinesApprox
Set the number of average number of lines that the log file should have; counts
<= 0 indicate no limit.
[line count]: reduce the log after reaching 1.2*[line count] lines to 0.8*[line
count] lines
returns: nothing
@StateChanging

b_flog_getHeaderFunction flog/b_flog_getHeaderFunction
Get the name of the header callback function that is used.
returns: see above

b_flog_setHeaderFunction [header function] flog/b_flog_setHeaderFunction
Set the name of the header callback function to be used.
[header function]: name of the header function to use
returns: nothing
@StateChanging

Header Functions b_flog_defaultHeader [severity]

flog/b_flog_defaultHeader
Default header callback function used with b_flog_init.
[severity]: the default header ignores the severity
returns: the default header meant to be used for the current moment in time

b_flog_headerDateSeverity [severity]

flog/b_flog_headerDateSeverity
An alternative to the default header callback function which appends the severity
to the default header.
[severity]: see b_flog_init
returns: the default header with the severity appended

b_flog_headerDateScriptSeverity [severity]

flog/b_flog_headerDateScriptSeverity
An alternative to the default header callback function which appends the calling
script and the severity to the default header.
[severity]: see b_flog_init
returns: the default header with the calling script and severity appended

36

fs
Collection of file and file system related functions.

Copyright (C) 2022 David Hobach LGPLv3
0.4

Dependencies

cat
findmnt
head
lsblk
mktemp
mount
rm
stat
sync
wc

Imports

no imports

Functions

b_fs_isEmptyDir [dir] fs/b_fs_isEmptyDir
Check whether the given directory is empty or non-existing. It is not checked
whether the passed parameter is a file preventing a directory from being created.
[dir]: full path to the directory to check
returns: a zero exit code if the directory does not exist or is empty

b_fs_getLineCount [file] fs/b_fs_getLineCount
Get the number of lines of the given file.
[file]: full path to a file
returns: the number of lines; a non-zero exit code is set on errors
@B_E

b_fs_waitForFile [file] [maximum time] fs/b_fs_waitForFile
Sleep until the given file appears. The check interval is 1s.
[file]: full path to the file or directory to wait for
[maximum time]: maximum time in s to wait for the file to appear (default:
forever)
returns: Sets a zero exit code if the file appeared and a non-zero exit code on a
timeout.

37

b_fs_getMountpoints [device] fs/b_fs_getMountpoints
Get all mountpoints for the given device.
[device]: Full path to the device (incl. /dev/) for which to obtain the mountpoints.
returns: A newline-separated list of mountpoints where the given device is
mounted to. Sets a non-zero exit code if no such mountpoints were found.

b_fs_mountIfNecessary [device] [mount point] [enforce] [mount op-
tions] fs/b_fs_mountIfNecessary
Mount the given device if it isn’t already mounted.
[device]: Full path to the device (incl. /dev/) to mount.
[mount point]: Full path where to mount the device. If no mount point is
specified, a /tmp/ mount point is chosen. Non-existing directories are created.
Is ignored if another mount point already exists.
[enforce]: If set to 0, enforce the given mount point to be used in addition to
potentially existing ones (default: 1). Mount options are ignored.
[mount options]: Options to pass to mount, if it needs to be executed (default:
none).
returns: The chosen mount point or a newline-separated list of existing mount
points on success; sets a non-zero exit code on failure.
@B_E

b_fs_createLoopDeviceIfNecessary [file] fs/b_fs_createLoopDeviceIfNecessary
Create a loop device for the given file if no old one exists. Usually requires root
access rights.
[file]: File for which to create a loop device.
returns: Created loop device or previously used one (incl. /dev/). Sets a
non-zero exit code, if no device could be created.
@B_E

b_fs_removeUnusedLoopDevice [device|file] fs/b_fs_removeUnusedLoopDevice
Remove a loop device, if and only if it is unused by the operating system.
Otherwise mark it for removal once it becomes unused. Usually requires root
access rights.
[device|file]: Full path (incl. /dev/) to the loop device or to the backing file.
returns: Sets a zero exit code, if the loop device was not used and could thus
be successfully removed or does not exist. A nonzero exit code indicates that
the device is still being used. B_E is called on other errors.
@B_E

b_fs_parseSize [string] [check flag] fs/b_fs_parseSize
Parse human-readable file system sizes that include units.
[string]: A string denoting a file system size of the format [number][unit]. Unit
may be one of KB 1000, K 1024, MB 10001000, M 10241024, GB 100010001000,
G 102410241024, and so on for T, P. If no unit is provided, the number is
assumed to denote bytes. The number must be an integer.

38

[check flag]: Check whether the result makes sense (default: 0/true). This check
will make integer overflows less likely.
returns: The respective number of bytes meant with the given string. B_E is
called on parsing errors.
@B_E

b_fs_removeWithOverwrite [file] [randomness source] fs/b_fs_removeWithOverwrite
Overwrite the given file with random data, then remove it. This is meant to
prevent a potential reconstruction of the file after its removal.
Warning: The reconstruction may still work on some types of file systems or
physical storage systems (e.g. on flash disks/SSDs).
[file]: Full path to the file to remove. Directories are currently not supported.
[randomness source]: Device to use as source of random data (default:
/dev/urandom).
returns: Nothing. B_E is called on errors.
@B_E

b_fs_isRotatingDrive [block device] fs/b_fs_isRotatingDrive
Check whether the given block device is a rotating disk (non-SSD) or not.
[block device]: Device name or path to check.
returns: Nothing. Sets a zero exit code, if the device is a rotating one. Non-
existing devices trigger B_E.
@B_E

b_fs_getBlockDevice [file] fs/b_fs_getBlockDevice
Get the block device on which the given file or directory is stored.
[file]: Full path to the file.
returns: Full device path where the given file or directory is stored. May return
pseudo file systems (e.g. tmpfs).
@B_E

b_fs_removeRelativelySafely [file] [randomness source] fs/b_fs_removeRelativelySafely
A best-effort implementation that attempts to remove files from the file system
in a non-reconstructible way.
Contrary to b_fs_removeWithOverwrite it’ll attempt to achieve similar results
on SSDs.
May require root privileges.
Warning: The reconstruction may still work depending on your hardware.
[file]: Full path to the file to remove. Directories are currently not supported.
[randomness source]: Device to use as source of random data (default:
/dev/urandom).
returns: Nothing. B_E is called on errors.
@B_E

39

b_fs_enumerate [path list] [nonexisting] fs/b_fs_enumerate
Enumerate all files found in the given list of paths. Recurse into directories as
necessary.
[path list]: Newline-separated list of files and directories.
[nonexisting]: 0 = Error out with B_E on non-existing files (default). 1 =
Silently drop non-existing files. 2 = Include non-exiting files in the output.
returns: List of files found in all of the given paths.
@B_E

hash
Hash functions.

Copyright (C) 2020 David Hobach LGPLv3
0.5

Dependencies

no dependencies

Imports

no imports

b_hash_file [file] [algorithm]

hash/b_hash_file
Compute the hash of the given file.
[file]: Full path to the file.
[algorithm]: Algorithm to use. Currently supported: md5|sha1|sha224|sha256|sha384|sha512|crc|blake2
(default: md5).
returns: The hash of the given file.
@B_E

b_hash_str [string] [algorithm]

hash/b_hash_str
Compute the hash of the given string.
[string]: String which to compute the hash for.
[algorithm]: Algorithm to use. Currently supported: md5|sha1|sha224|sha256|sha384|sha512|crc|blake2
(default: md5).
returns: The hash of the given string.
@B_E

http
Collection of http related functions.

40

Copyright (C) 2018 David Hobach LGPLv3
0.2

Dependencies

curl

Imports

types

Global Variables

B_HTTP_CHECKURLS http/B_HTTP_CHECKURLS
Each call to b_http_getOnlineStatus causes one of the URLs in this array to
be visited.
It is recommended to pick a relatively large number of URLs with SSL support
to remain relatively anonymous, if b_http_getOnlineStatus is called multiple
times.
Defaults to the European/US Alexa Top 10 (which hopefully blends in to the
masses).

Functions

b_http_rawUrlEncode [string] http/b_http_rawUrlEncode
Encode the given string according to RFC 3986.
[string]: to encode
returns: Returns a string in which all non-alphanumeric characters except -_.~
have been replaced with a percent (%) sign followed by two hex digits. This
is the encoding described in RFC 3986 for protecting literal characters from
being interpreted as special URL delimiters, and for protecting URLs from being
mangled by transmission media with character conversions (like some email
systems). A non-zero exit code is set on errors.
@B_E

b_http_rawUrlDecode [string] http/b_http_rawUrlDecode
Decode the given string encoded with b_str_rawUrlEncode or an equivalent
function.
[string]: to decode
returns: The literal string with all hex characters replaced; a non-zero exit code
is set on errors.

b_http_getOnlineStatus [timeout] http/b_http_getOnlineStatus
Find out whether we are online or not by attempting an http connection.
One of B_HTTP_CHECKURLS is possibly visited during the process.
Use b_net_getDNSStatus for DNS-only checks.
[timeout]: Timeout in seconds for hanging checks (default: 5).

41

returns: 0, if we’re online, 1 if only DNS works, 2 if neither DNS nor http(s)
worked, 3 if the check timed out; B_E will be called if the status cannot be
determined.
@B_E

b_http_testProxy [proxy string] [intransparent only] [timeout]
http/b_http_testProxy
Test whether the given proxy is working as advertised.
[proxy string]: Connection string to test, e.g. https://1.1.1.1:234.
[intransparent only]: If set to 0 (default), only accept intransparent proxies
(i.e. those not revealing your IP).
[timeout]: Time in seconds after which to consider the proxy non-responsive
(default: 5).
returns: Nothing, but sets a zero exit code, if and only if the proxy appears to
work.

ini
Stateful ini reader for bash.

Currently only a single file per instance of this library/thread is kept in memory,
but you can read multiple files one after another or in multiple threads.

Implementation Specifics:

• names/keys & values are case sensitive
• comment lines may start with ; or #
• whitespace lines are ignored
• duplicate names may result in undefined behaviour (usually the second

will override the first)
• all characters following the = are considered part of the value (incl. whites-

pace); whitespace before and after the value may be trimmed by the getters
though (check their description)

• values are not interpreted (e.g. quotes, escape characters, . . .)
• whitespace around keys and around section qualifiers is ignored

Copyright (C) 2018 David Hobach LGPLv3
0.5

Dependencies

no dependencies

Imports

no imports

42

Functions

b_ini_read [ini file] ini/b_ini_read
read the given ini file and keep it in thread-local memory so that subsequent calls
to the b_ini_get functions will return the values from the ini file; subsequent
calls to this function will update the internal state to represent the file last read
in this thread
[ini file]: path to the ini file to read
returns: an error message on errors and sets a non-zero exit code on errors
@StateChanging
@B_E

b_ini_get [name] [section] ini/b_ini_get
get the value for the ini entry with the given name as String in raw format
[name]: name/key of the ini entry to retrieve
[section]: section where to look for the entry with the given name (default:
without section)
returns: value of the ini entry matching exactly the given section and name
incl. any whitespace; a non-zero exit code is set if such an entry wasn’t found

b_ini_getString [name] [section] ini/b_ini_getString
get the value for the ini entry with the given name as String and remove all
whitespace around the returned String
[name]: name/key of the ini entry to retrieve
[section]: section where to look for the entry with the given name (default:
without section)
returns: value of the ini entry matching exactly the given section and name
excl. any whitespace around; a non-zero exit code is set if such an entry wasn’t
found

b_ini_getInt [name] [section] ini/b_ini_getInt
get the value for the ini entry with the given name as integer
[name]: see b_ini_get
[section]: see b_ini_get
returns: see b_ini_get; additionally it is checked whether the return value is an
integer (if not, a non-zero exit code of 2 is set and the return value is undefined)

b_ini_getBool [name] [section] ini/b_ini_getBool
get the value for the ini entry with the given name as boolean
[name]: see b_ini_get
[section]: see b_ini_get
returns: see b_ini_get; 0 is returned via echo for true, 1 for false; the exit
code indicates a potential error during parsing (2) or a missing entry (1) and
not true/false

43

b_ini_assertNames [section 1] [name 1] . . . [name n] – [section 2]
[name 1] . . . [name m] ini/b_ini_assertNames
Assert that the given sections contains at most the given names and no additional
ones.
This is a useful function to detect user mistakes and should be called right after
b_ini_read.
Multiple sections can be separated with “–”.
[section]: see b_ini_get
[name]: see b_ini_get
returns: Sets a zero exit code if and only if the last read ini file doesn’t contain
any additional names. Otherwise B_E is triggered. B_ERR will list the invalid
names.
@B_E

keys
Simple system-wide cryptographic key store protected by a master password.

A key store is only opened when necessary. It’ll remain open from then on until
an application calls b_keys_close.

The default key store can be found at /etc/blib/keys. Applications may deploy
their own exclusive key store, if necessary (not recommended).

Usually requires root access rights.

Features:
- thread safe: no write operation can happen to a closed key store (b_keys_close
and write operations are single threaded only)
- retrieved keys are read-only unless managed via this interface

Copyright (C) 2022 David Hobach LGPLv3
0.7

Dependencies

cat
cp
find
findmnt
mkdir
readlink
rm

Imports

dmcrypt
multithreading/mtx

44

Functions

b_keys_getDefaultStore keys/b_keys_getDefaultStore
Get the system-wide default key store directory.
returns: The default store directory. Always sets a zero exit code.

b_keys_init [app id] [auto create] [ui mode] [password prompt] [wait
time] [store dir] keys/b_keys_init
Initialize this module. This function must be called at least once before any
other function except b_keys_create can be used.
Will open the key store, if it’s closed.
[app id]: Unique application ID (recommended: $B_SCRIPT_NAME).
[auto create]: Automatically create a new key store, if none exists (default: 0 =
do it). Users may create their own key store using cryptsetup otherwise.
[ui mode]: How to request the master password from the user: auto|gui|tty
(default: auto).
[password prompt]: Prompt string to ask the user for his password (optional).
[wait time]: Maximum time in ms to wait for another process writing to a key
(default: 300) (-1 = indefinitely).
[store dir]: Full path to a directory where to manage the keys (default:
b_keys_getDefaultStore). Only applications requiring an exclusive key store
should use a non-default value here.
returns: Sets a zero exit code on success and errors out with B_E otherwise.
@StateChanging
@B_E

b_keys_add [key id] [key path] keys/b_keys_add
Add the given key to the key store.
[key id]: Unique identifier for the key to add.
[key path]: Full path to the key to add. It is not removed. Use functions such
as b_fs_removeRelativelySafely to do that.
returns: Sets a zero exit code on success and errors out with B_E otherwise.
@B_E

b_keys_get [key id] keys/b_keys_get
Retrieve the given key from the store. If you need the content as String, please
use b_keys_getContent.
[key id]: Unique identifier for the key to retrieve.
returns: Path to the key. It may not exist, if the key store was closed in the
meantime or the provided ID does not exist.
@B_E

b_keys_getAll [global] keys/b_keys_getAll
Retrieve all keys from the store.
[global]: If set to 0, also retrieve keys for other application IDs (default: 1).

45

returns: All key paths for reading as a newline-separated list. If the key store
is closed or modified during the runtime, the list may be empty or incomplete.
@B_E

b_keys_getContent [key id] keys/b_keys_getContent
Retrieve the given key content from the store. For binary keys please use
b_keys_get.
[key id]: Unique identifier for the key to retrieve.
returns: The key content as String. If it doesn’t exist or other errors occurred,
B_E is called.
@B_E

b_keys_delete [key id] [backup] keys/b_keys_delete
Delete the given key from the key store.
[key id]: Unique identifier for the key to delete.
[backup]: Whether (0) or not (1) to create a backup (default: 0).
returns: Sets a zero exit code on success and errors out with B_E otherwise.
@B_E

b_keys_close [store dir] keys/b_keys_close
Close the key store, if necessary. Works without initialisation (which might open
the key store), if necessary.
WARNING: 99% of all applications should never call this function as it may block
all subsequent read operations by any other applications using this system-wide
key store. The only applications that might call this function are key store
management applications and only upon explicit user request. The key store is
otherwise automatically closed upon system shutdown by the running OS.
[store dir]: The main directory of the store to close (default: the key store
directory used in b_keys_init or - if not initialised - b_keys_getDefaultStore).
returns: Sets a zero exit code on success (closed key store) and errors out with
B_E otherwise.
@B_E

meta
Functions providing information about blib modules or other bash scripts.

Copyright (C) 2020 David Hobach LGPLv3
0.2

Dependencies

no dependencies

Imports

str

46

Functions

b_meta_getClearImports [path] meta/b_meta_getClearImports
Get the list of modules that the given script imports via b_import.
Important: All b_import calls are assumed to be declared on a dedicated line
and to start at the first character of that line (“clear” import). This is considered
a feature to evade this method (for doc purposes mostly).
[path]: Full path to the script to retrieve the module imports for.
returns: Newline-separated list of imports of the given script.
@B_E

b_meta_getClearDeps [path] meta/b_meta_getClearDeps
Get the list of dependencies that the given script declares via b_deps.
Important: All b_deps calls are assumed to be declared on a dedicated line
and to start at the first character of that line (“clear” dependency). This is
considered a feature to evade this method (for doc purposes mostly).
[path]: Full path to the script to retrieve the dependencies for.
returns: Newline-separated list of dependencies of the given script.
@B_E

multithreading/ipcm
An inter-process map implementation.

The map is available to all running processes during a single boot session.

Both reading and writing to the map can be done from any number of processes.

Overall Features
readers multiple
writers multiple
read consistency always
write consistency always
blocking on writes

Copyright (C) 2019 David Hobach LGPLv3
0.2

Dependencies

no dependencies

Imports

multithreading/ipcv
multithreading/mtx

47

Functions

b_ipcm_setNamespace [namespace] multithreading/ipcm/b_ipcm_setNamespace
Set the common process namespace to use. All processes inside the same
namespace share a common state.
It is recommended to call this function a single time before any other functions
of this module. Otherwise the default namespace, which may include unrelated
processes, is used.
[namespace]: Name of the namespace to set.
returns: Errors out, if the name is unacceptable.
@StateChanging
@B_E

b_ipcm_getNamespace multithreading/ipcm/b_ipcm_getNamespace
Retrieve the currently used namespace.
returns: The currently used namespace.

b_ipcm_change [key] [change function] [maximum time] multithread-
ing/ipcm/b_ipcm_change
Change the given key/value combination inside the map in a thread-safe way.
May wait for changes done by other processes.
[key]: A global unique identifier for the given value.
[change function]: Name of the function to execute the change of the value. It
will be called with the current key as first parameter and the current value as
second. It is expected to print the new value to set for this key. A non-zero exit
code will cause b_ipcm_change to abort the change.
[maximum time]: maximum time in ms to wait for other processes to complete
their operation (default: -1 = indefinitely)
returns: A zero exit code and prints the new value, if the change succeeded.
An exit code of B_RC+1 indicates that the change function returned a non-zero
exit code. B_E is called otherwise.
@B_E

b_ipcm_get [key] [fallback] multithreading/ipcm/b_ipcm_get
Retrieve the data found at the given key.
[key]: A global unique identifier for the data to retrieve.
[fallback]: Data to return if nothing was found for the given key (default: empty).
returns: Sets a zero exit code and returns the data found on success. If no
data was found, the fallback data is returned and a zero exit code is set. B_E is
called on errors.

b_ipcm_unsetNamespace [namespace] [maximum time] multithread-
ing/ipcm/b_ipcm_unsetNamespace
Unsets the given namespace and all keys stored within it.
It is recommended to call this function when all processes finished their work.

48

[namespace]: The namespace to unset (default: the current namespace).
[maximum time]: maximum time in ms to wait for other processes to complete
their operation (default: 0 = indefinitely)
returns: Sets a zero exit code only upon successful removal. Otherwise B_E is
triggered.
@B_E

multithreading/ipcv
Provides means for inter-process communication (ipc) via global bash variables
(v).

This implementation uses shared memory, i.e. it should be reasonably fast.

Only a single process or thread is assumed to be writing (i.e. use b_ipcv_save)
a variable at a time and multiple processes may read it (using e.g. b_ipcv_load).
If you need to write a single variable from multiple processes, please consider
using the multithreading/mtx module or similar locking means in combination
with this module (or just multithreading/ipcm).

Overall Features
readers multiple
writers single
read consistency always
write consistency only for one writer
blocking never

Copyright (C) 2018 David Hobach LGPLv3
0.3

Dependencies

findmnt
mkdir
mktemp
mv
rm

Imports

no imports

Functions

b_ipcv_save [namespace] [var name 1] .. [var name n] multithread-
ing/ipcv/b_ipcv_save

49

Save the current values of the given variables so that they are made available for
other processes under the given namespace.

Please note that each variable is saved atomically, but individually. I.e. if you
need multiple values to be updated at the same time, please use a single variable
(e.g. a map).
[namespace]: Name for a common group under which the given variables should
be saved. The combination of [namespace] and [variable name] must be a unique
identifier across all processes running on the system.
[var name i]: The name of the global variable to make accessible for other
processes. An arbitrary number of variable names can be specified.
returns: Nothing, but a non-zero exit code indicates failed variable save attempts.
A failed save attempt also triggers B_E.
@B_E

b_ipcv_load [namespace] [var name 1] .. [var name n] multithread-
ing/ipcv/b_ipcv_load
Load the given variables from the given namespace into the current process
context.
[namespace]: Name of the group under which the variable was saved with
b_ipcv_save. Must exist.
[var name i]: Name of the variable to load. Multiple names can be specified.
returns: A non-zero exit code indicates the number of variables that could not
be loaded unless some unexpected error occurred and B_E is triggered. Please
note that a failed load attempt/unavailable variable does generally not trigger
B_E.
@B_E

b_ipcv_loadNamespace [namespace] [check existence] multithread-
ing/ipcv/b_ipcv_loadNamespace
Load all variables that can be loaded for the given namespace into the current
process context.
[namespace]: Name of the group for which to load all available variables.
[check existence]: Whether or not to make sure that the namespace to load exists
(default: 0/check). Otherwise non-existing namespaces will not cause an error.
returns: Sets a zero exit code on success. Failing to load any single available
variable will always trigger B_E.
@B_E

b_ipcv_unset [namespace] [var name 1] .. [var name n] multithread-
ing/ipcv/b_ipcv_unset
Unset/Remove the given variables from the global namespace.
Please note that the variables will remain set in your current process context, if
they were set before. Use the standard bash unset for that.
[namespace]: Group where the given variables belong to.
[var name i]: Name of the variable to remove. Multiple may be specified.

50

returns: The number of variables which could not be unset. B_E is not trig-
gered for these.
@B_E

b_ipcv_unsetNamespace [namespace] multithreading/ipcv/b_ipcv_unsetNamespace
Remove the given global namespace and all variables it contains.
Please note that the variables will remain set in your current process context, if
they were set before. Use the standard bash unset for that.
[namespace]: To remove.
returns: Sets a zero exit code only upon successful removal. Otherwise B_E is
triggered.
@B_E

multithreading/mtx
Collection of mutex related functions.

Mutex: Only a single process may have it at any point in time.
Semaphore: A specific maximum number of processes may have it at any point
in time.

See the keys module source code for an example on how to use this mutex
implementation efficiently.

Copyright (C) 2018 David Hobach LGPLv3
0.3

Dependencies

cat
mkdir
mktemp
rm
rmdir
sleep
touch

Imports

proc

Functions

b_mtx_setSleepTime [ms] multithreading/mtx/b_mtx_setSleepTime
Sets the time to sleep for this module whenever active polling is done (default:
500).
[ms]: time in miliseconds between active polling requests for e.g. mutexes done

51

by this module; must be an integer
returns: Nothing, always sets a zero exit code.

b_mtx_getSleepTime multithreading/mtx/b_mtx_getSleepTime
Gets the time to sleep for this module whenever active polling is done.
returns: The currently set time to sleep in ms.

b_mtx_create [base dir] multithreading/mtx/b_mtx_create
Allocate a new mutex without claiming it (use b_mtx_try for that).
[base dir]: Path to an existing directory where to store the mutex (default:
not specified). By default this module will pick a temporary location. If you
need a mutex that persists across reboots, please set a directory that persists
across reboots here. The path should point to a local, non-network file system
destination. The module must be able to create remove files or directories there
at will.
returns: A string identifying the mutex (mutex ID). Sets a non-zero exit code
on errors.
@B_E

b_mtx_release [mutex] [block ID] multithreading/mtx/b_mtx_release
Release the given mutex so that it can be used by other block IDs/threads.
[mutex]: A mutex obtained via b_mtx_create.
[block ID]: The block ID for which to release the mutex (default: $$).
returns: Sets a non-zero exit code if the mutex could not be removed as another
process is blocking it and a zero exit code on successful removal.

b_mtx_forceRelease [mutex] multithreading/mtx/b_mtx_forceRelease
Release the given mutex so that it can be used by other blockIDs/threads.
Warning: This function can remove mutexes from other threads and should
generally only be used for the removal of mutexes which are known to be stale
by the calling application.
[mutex]: A mutex obtained via b_mtx_create.
returns: Nothing and sets a zero exit code.

b_mtx_pass [mutex] [block ID] multithreading/mtx/b_mtx_pass
Pass a blocked mutex to another block ID (i.e. change the block ID of the given
mutex).
You should only do this if you currently own the mutex and the new process is
ready to take over.
[mutex]: A mutex obtained via b_mtx_create.
[block ID]: The block ID to set for the given mutex.
returns: Sets a zero exit code on success and a non-zero exit code otherwise.
@B_E

52

b_mtx_try [mutex] [block ID] [claim stale] [claim own] multithread-
ing/mtx/b_mtx_try
Attempt to obtain the given mutex. Return immediately even if it cannot be
obtained.
[mutex]: A mutex obtained via b_mtx_create. You may also use a static and
otherwise unused directory path as mutex and share it across all relevant pro-
cesses.
[block ID]: The ID to use by which to block (default: running (sub)shell process
id $$). This should be the process ID of the process attempting to obtain the
mutex or you should know what you’re doing. If you’re in a subshell that should
deploy a mutex against other subshells, store their $BASHPID and call the
function with that.
[claim stale]: If set to 0, claim the mutex even if it is still blocked by some other
process, but that process isn’t running anymore. If set to 1 (default), the function
returns without obtaining the mutex. In general this should only be used in
situations where a mutex has a high probability of being stale (e.g. application
start).
[claim own]: If set to 0 (default), claim the mutex if it appears to be blocked by
the provided block ID. If set to 1, consider it blocked even then.
returns: The function incl. parameters to execute to remove the mutex if it
was obtained and an error message stating the reason otherwise. The provided
function should be called as part of an exit trap of the calling script or via eval.
Sets an exit code of 0, if the mutex was obtained. An exit code of 1 is set, if the
mutex was blocked and another non-zero exit code if some other error occurred
(the mutex might be blocked even then).

Example code:

local mutex=""
local mutexRet=""
mutex="$(b_mtx_create)" || { B_ERR="Failed to create a mutex." ; B_E ; }
mutexRet="$(b_mtx_try "$mutex")" \
|| { B_ERR="Failed to obtain the mutex $mutex. Reason: $mutexRet" ; B_E ; }
#assuming the mutex is only meant to be removed after full
#execution of the script:
trap "$mutexRet" EXIT
#direct removal:
#b_mtx_release "$mutex"

b_mtx_waitFor [mutex] [block ID] [claim stale] [maximum time]
multithreading/mtx/b_mtx_waitFor
Wait for the given mutex to become available. This will block script execution.
[mutex]: see b_mtx_try
[block ID]: see b_mtx_try
[claim stale]: see b_mtx_try
[maximum time]: maximum time in ms to wait for the mutex to become available

53

(default: -1 = indefinitely)
returns: see b_mtx_try

multithreading/multiw
Allow multiple processes to write to a virtual file at the same time without
causing write inconsitencies (written data from each process mangled with each
other).

This is achieved by keeping one file per process and relies on the assumption
that both replacing and reading a symlink on your Linux distribution is atomic.

In order for this to work, all write operations must go through this module.

Currently reading only returns the data written by the process which wrote last.
If you need some sort of appending, it makes more sense to deploy a mutex using
e.g. the multithreading/mtx module.

Overall Features
readers multiple
writers multiple
read consistency partial, last writer wins
write consistency always
blocking never

Copyright (C) 2019 David Hobach LGPLv3
0.2

Dependencies

ln
mv
rm
shuf
stat

Imports

no imports

Functions

b_multiw_setMaxHangTime [seconds] multithreading/multiw/b_multiw_setMaxHangTime
Set the maximum time that a process is expected to hang between two instruc-
tions. This is relevant for various internal guarantees.
[seconds]: Time in seconds that a process hangs at most.

54

returns: Nothing.
@StateChanging

b_multiw_getMaxHangTime multithreading/multiw/b_multiw_getMaxHangTime
Get the maximum time that a process is expected to hang between two instruc-
tions. This is relevant for various internal guarantees.
returns: Time in seconds.

b_multiw_write [file path] multithreading/multiw/b_multiw_write
Write all data lying in stdin to the given virtual file in a thread-safe way.
[file path]: Full path to the virtual file to write to. Must not be a regular file
(but may not exist).
returns: A zero exit code, if the write operation was successful and a non-zero
exit code otherwise.
@B_E

b_multiw_remove [file path] multithreading/multiw/b_multiw_remove
Remove the given virtual file and all of its revisions.
This function should only be called when all processes finished reading and
writing. It is recommended to use it over the standard Linux rm as the latter
will leave remnants behind.
returns: A zero exit code on success.
@B_E

net
Collection of network related functions.

Copyright (C) 2020 David Hobach LGPLv3
0.1

Dependencies

dig

Imports

no imports

Global Variables

B_NET_CHECKHOSTS net/B_NET_CHECKHOSTS
Each call to b_net_getDNSStatus causes one of the host records in this array
to be requested.
It is recommended to pick a relatively large number of URLs with SSL support to
remain relatively anonymous, if b_net_getDNSStatus is called multiple times.

55

Defaults to the European/US Alexa Top 10 (which hopefully blends in to the
masses).

B_NET_DNSSERVERS net/B_NET_DNSSERVERS
Each call to b_net_getDNSStatus with a random [server] causes one of the IPs
in this array to be used as DNS server.
Defaults to common large-scale free DNS providers (that probably save your
requests).
Sources:
- https://www.techradar.com/news/best-dns-server
- https://dnsmap.io/articles/most-popular-dns-servers

Functions

b_net_getDNSStatus [timeout] [server] net/b_net_getDNSStatus
Find out whether DNS appears to work or not by testing it.
One of B_NET_CHECKHOSTS is possibly requested during the process.
Use b_http_getOnlineStatus for http checks.
[timeout]: Timeout in seconds for hanging checks (default: 5).
[server]: DNS server to use (default: the OS default). Passing random will pick
a random DNS server.
returns: 0 if DNS works as expected, 1 if DNS works but returns NXDOMAIN
and 2 on timeout; B_E will be called if the status cannot be determined.
@B_E

notify
Collection of notification related functions.

Copyright (C) 2021 David Hobach LGPLv3
0.6

Dependencies

getent
id
notify-send
su

Imports

fs

Functions

b_notify_waitForUserDbus [user] [maximum time] notify/b_notify_waitForUserDbus
Wait for some dbus user session to come up at /run/user/[uid]/bus. As

56

dbus is required for notifications to work, waiting may be required for early
notifications.
[maximum time]: Maximum time in s to wait for the file to appear (default:
forever).
[user]: Name of the user whose instance to wait for (default: first user with a
readable home directory).
returns: Sets a zero exit code and returns the identified dbus instance, if a
dbus instance came up and a non-zero exit code on timeout. B_E is used for
exceptional errors.
@B_E

b_notify_send [arg 1] . . . [arg n] notify/b_notify_send
Send out a notification to the user via notify-send.
If run as root, may send the notification to all active non-root users.
Calling notify-send directly can be problematic depending on the user, dbus
session, environment variables, . . . This function aims to circumvent these
potential issues.
[arg i]: All arguments are directly passed to notify-send.
returns: Nothing. Errors during notification sending will trigger B_E.
@B_E

b_notify_sendNoError [arg 1] . . . [arg n] notify/b_notify_sendNoError
Convenience variant of b_notify_send that does not exit and only prints errors
with b_defaultErrorHandler. This function should e.g. be used in custom error
handlers to avoid recursion.
returns: Sets a non-zero exit code on errors.

os/osid
Functions for operating system identification.

Copyright (C) 2018 David Hobach LGPLv3
0.2

Dependencies

no dependencies

Imports

no imports

Functions

b_osid_init [force] os/osid/b_osid_init
[force]: if set to 0, force an init even if it would otherwise not be necessary
(default: 1 - only initialize if it didn’t happen before)

57

Initialize the osid module. It should normally not be necessary to call this
function directly, but it will be called by the osid module internally as needed.
returns: May error out and set a non-zero exit code on failures.

b_osid_isDebian os/osid/b_osid_isDebian
Check whether the OS running this function is a Debian Linux.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isDebianLike os/osid/b_osid_isDebianLike
Check whether the OS running this function is a Debian Linux or one of its
derivatives (e.g. ubuntu).
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isOpenSuse os/osid/b_osid_isOpenSuse
Check whether the OS running this function is a OpenSUSE.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isFedora os/osid/b_osid_isFedora
Check whether the OS running this function is a Fedora Linux.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isCentOS os/osid/b_osid_isCentOS
Check whether the OS running this function is a CentOS.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isRedHat os/osid/b_osid_isRedHat
Check whether the OS running this function is a RedHat Linux.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isUbuntu os/osid/b_osid_isUbuntu
Check whether the OS running this function is an Ubuntu Linux.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isFedoraLike os/osid/b_osid_isFedoraLike
Check whether the OS running this function is a Fedora Linux or one of its
derivatives (e.g. CentOS, Red Hat, Qubes OS).
returns: Sets a zero exit code if the check returns true. Does not print any
output.

58

b_osid_isQubesDom0 os/osid/b_osid_isQubesDom0
Check whether the OS running this function is a Qubes OS in dom0.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

b_osid_isQubesVM os/osid/b_osid_isQubesVM
Check whether the OS running this function is a Qubes OS in a VM.
returns: Sets a zero exit code if the check returns true. Does not print any
output.

os/qubes4/dom0
Collection of functions supporting scripting in Qubes OS 4.x dom0.

Important: Whenever you parse output from VMs to dom0, you must be extra
careful and assume it totally untrusted as parsing bugs are a plausible attack
vector for compromised VMs. Passing data to potentially compromised VMs of
course also exposes that data’s confidentiality.

Copyright (C) 2022 David Hobach LGPLv3
0.7

Dependencies

basename
cat
dd
dirname
kill
losetup
mktemp
ps
python3
qubesdb-rm
qubesdb-write
qubes-prefs
qvm-block
qvm-check
qvm-firewall
qvm-ls
qvm-pool
qvm-run
qvm-shutdown
qvm-volume
readlink
setsid
sleep

59

sort
tar
tee
timeout
xxd

Imports

fs
proc
types
ui

Global Variables

B_DOM0_VM_STDERR os/qubes4/dom0/B_DOM0_VM_STDERR
Where to append the VM stderr output for b_dom0_qvmRun and its related
functions.
Defaults to /dev/null for security reasons (VM output is always untrusted).

B_DOM0_QVM_RUN_PARAMS os/qubes4/dom0/B_DOM0_QVM_RUN_PARAMS
Alternative method to pass parameters to b_dom0_qvmRun and its related
functions.
Useful for e.g. --no-gui to speed up performance when you never use a VM’s
GUI.
Default: Empty array.

Functions

b_dom0_setVMDeps [list] [keep defaults] os/qubes4/dom0/b_dom0_setVMDeps
Set the dependencies for all VMs used with this module to the given list of
binaries.
These dependencies are checked before any execution of commands in any VM;
in particular whenever b_dom0_qvmRun, b_dom0_execIn, b_dom0_execStrIn
or b_dom0_execFuncIn are called.
[list]: Newline-separated list of binaries or commands that VMs must be able to
execute.
[keep defaults]: If set to 0 (default), merge the default list of dependencies with
the supplied one. Otherwise only keep the supplied list of dependencies.
returns: Nothing.
@StateChanging

b_dom0_getVMDeps os/qubes4/dom0/b_dom0_getVMDeps
Getter for b_dom0_setVMDeps.
returns: The current list of dependencies for VMs.

60

b_dom0_qvmRun [parameter 1] . . . [parameter n] [vm] [command]
os/qubes4/dom0/b_dom0_qvmRun
A wrapper for qvm-run which sets reasonable defaults for shell scripting and
applies various fixes.

Most calls to qvm-run should be made via this function rather than interacting
with qvm-run directly as the Qubes OS qvm-run was designed with interactive
shell usage in mind whereas this wrapper is intended for bash developers.

Particular features:

• a certain set of reasonable default parameters is used: -p -q -n -u root
• -n was set as auto-starting VMs during Bash scripting can heavily influence

the user experience (imagine the VM being shut down manually by the
user whilst a bash script is running –> constant restarts)

• stdin is redirected to /dev/null by default to avoid potential security
implications (accidental reads from dom0 stdin passed to a VM); this can
be overridden using –stdin

• stdout has the VM output and the exit code is the one of the VM
• stderr VM output is appended to B_DOM0_VM_STDERR (defult:

/dev/null for security reasons)
• distinguished exit conditions (executed command failed vs. qvm-run failed)
• workarounds for known Qubes bugs wrt qvm-run may be implemented

here (e.g. qubes issues #3083, #4476, #4633 in the past)
• VM dependencies set with b_dom0_setVMDeps are checked

Please note that calling this function will make your script wait for the execution
of the commands in the client VM.

Wherever possible, this function should be combined with b_silence as the VM
output shouldn’t be trusted. Otherwise please keep in mind that both stdout
and stderr may have untrusted output which may even contain binary data. In
order to validate against binary data you can e.g. use b_types_parseString or
b_types_str.

[parameters]: Any parameters supported by qvm-run. If you pass -a, the default
-n will be overridden. If you pass -u, the default root user is overridden. If
you pass -v, -q will be overridden. If you pass –stdin, even stdin is passed to
qvm-run. -p can be overridden by using /dev/null redirection. Only the short
parameter versions and only one switch per argument are supported. Parameters
may also be globally specified via B_DOM0_QVM_RUN_PARAMS, but the
global parameters are ignored, if any local parameters are specified.
[vm]: The VM where to run the given [command].
[command]: The command to run.
returns: Sets the exit code of qvm-run and prints its output. May error out
using B_E if qvm-run itself fails.
@B_E

61

b_dom0_getDispVMs os/qubes4/dom0/b_dom0_getDispVMs
Get a list of all currently existing disposable VMs.
returns: The currently existing disposable VMs as newline-separated list.
@B_E

b_dom0_startDispVM [template] os/qubes4/dom0/b_dom0_startDispVM
Start a dispVM from the given template in the background and return its name.
The disposable VM will remain started until it is shut down. If you only wish to
execute a single command, please use b_dom0_qvmRun with the –dispVM
parameter.
It may take a while for this function to obtain the name of the dispVM.
[template]: The template to use for the dispVM. If no template is specified, use
the default Qubes template.
returns: Name of the dispVM that was started and sets a zero exit code on
success. This function may error out.
@B_E

b_dom0_execIn [vm] [file] [user] os/qubes4/dom0/b_dom0_execIn
Execute the file as bash code in the given VM and wait for it to finish.

See b_dom0_qvmRun for various notes and words of caution.
[vm]: Name of the VM where to execute the given string. The VM is assumed
to be started.
[file]: Bash file to execute in the given VM.
[user]: user as which to execute the bash file (default: root)
returns: Whatever the executed Bash code prints in the VM to stderr or stdout;
the status code is set to the one of the executed Bash code on success (0).
Non-zero exit codes and error messages may come from both this function as
well as the code executed in the given VM.
@B_E

b_dom0_execStrIn [vm] [string] [user] os/qubes4/dom0/b_dom0_execStrIn
Execute the String as bash code in the given VM and wait for it to finish.

Convenience wrapper for b_dom0_execIn.

See b_dom0_qvmRun for various notes and words of caution.
[vm]: see b_dom0_execIn
[string]: Bash String to execute in the given VM.
[user]: see b_dom0_execIn
returns: see b_dom0_execIn; B_E is not called if the executed command
returns an error
@B_E

b_dom0_execFuncIn [vm] [user] [function] [module dep 1] .. [module
dep n] - [function dep 1] .. [function dep d] - [function param 1] ..

62

[function param p] os/qubes4/dom0/b_dom0_execFuncIn
Execute the Bash function in the given VM and wait for it to finish.

Convenience wrapper for b_dom0_execIn.

See b_dom0_qvmRun for various notes and words of caution.
[vm]: see b_dom0_execIn
[user]: see b_dom0_execIn
[function]: Name of the function as it is declared in the current scope.
[module dep i]: Names of the modules required by the function. They do not
need to be imported by the function itself.
[-]: A dash as separator character between the various parameters.
[function dep j]: An arbitrary number of functions that need to be added in
order to satisfy the dependencies of the function to call (e.g. if function A is
meant to be called, but uses function B internally, you’ll have to pass B as one
of its dependencies). Dependencies that can be found in added modules must
not be added.
[function param p]: An arbitrary number of function parameters.
returns: see b_dom0_execIn; B_E is not called if the executed command
returns an error
@B_E

b_dom0_waitForFileIn [vm] [file] [maximum time] os/qubes4/dom0/b_dom0_waitForFileIn
Convenience wrapper for b_fs_waitForFile.
[vm]: VM where to execute.
[file]: See [b_fs_waitForFile].
[maximum time]: See [b_fs_waitForFile].
returns: See [b_fs_waitForFile].
@B_E

b_dom0_isMountedIn [vm] [device] os/qubes4/dom0/b_dom0_isMountedIn
Check whether the device is mounted in the given VM.
[vm]: VM where to execute.
[device]: Full path to the device (incl. /dev/) to check.
returns: Sets a zero exit code if the device is mounted in the VM; a non-zero
exit code means that it’s either not mounted or some other error occurred.
@B_E

b_dom0_mountIfNecessary [vm] [device] [mount point] [enforce]
[mount options] os/qubes4/dom0/b_dom0_mountIfNecessary
Mount the given device in the target VM if it isn’t already mounted there.
Actually a wrapper for b_fs_mountIfNecessary.
[vm]: VM where to execute.
[device]: Full path to the device (incl. /dev/) to mount.
[mount point]: Full path where to mount the device. If no mount point is
specified, a /tmp/ mount point is chosen. Non-existing directories are created.

63

Is ignored if another mount point already exists.
[enforce]: If set to 0, enforce the given mount point to be used in addition to
potentially existing ones (default: 1).
[mount options]: Options to pass to mount, if it needs to be executed (default:
none).
returns: The chosen mount point or a newline-separated list of existing mount
points on success; sets a non-zero exit code on failure. As these strings are
returned from the VM, extra care must be taken when parsing them.
@B_E

b_dom0_createLoopDeviceIfNecessary [vm] [file] os/qubes4/dom0/b_dom0_createLoopDeviceIfNecessary
Create a loop device for the file in the given VM if no old one exists. Actually a
wrapper for b_fs_createLoopDeviceIfNecessary.
This usually requires root privileges.
[vm]: VM where to execute.
[file]: File for which to create a loop device.
returns: Created loop device or previously used one (incl. /dev/). Sets a
non-zero exit code, if no device could be created.
@B_E

b_dom0_removeUnusedLoopDevice [vm] [device|file] [type] [map]
os/qubes4/dom0/b_dom0_removeUnusedLoopDevice
Remove a loop device from the given VM, if it is neither used by Qubes OS nor
by the given VM.
Important: Calling this function may cause the device to be removed as soon as
it becomes unused by the VM (and the VM only!). So if you called this function,
you should not use the device any further from dom0 with e.g. qvm-block
afterwards - even if it wasn’t removed.
[vm]: VM where to remove the loop device.
[device|file]: Full path (incl. /dev/) to the loop device or to the backing file
inside the VM.
[type]: Whether the given path represents a loop device (0) or the backing file
(1). If not specified, a device will be assumed, if and only if the path starts with
/dev/.
[map]: Optional output from a previous call to b_dom0_parseQvmBlock. If
none is specified, this function will internally call b_dom0_parseQvmBlock.
returns: Sets a zero exit code, if the loop device was not used and could thus
be successfully removed or does not exist. A nonzero exit code indicates that
the device is still being used. B_E is called on other errors.
@B_E

b_dom0_copy [dom0 file] [target VM] [target VM dir] [overwrite]
[parent dir] os/qubes4/dom0/b_dom0_copy
Grab a file or directory in dom0 and push it to the given file path in the target
VM.

64

[dom0 file]: location of the dom0 file or directory to read from, assumed to exist
[target VM]: VM to write to, assumed to exist. Must be started.
[target VM dir]: full path to the parent directory in the target VM to copy the
file or directory to; non-existing parent directories are created; the name is taken
from the name of the file/directory in dom0
[overwrite]: Whether or not to overwrite an existing [destination file] (default: 0
= overwrite).
[parent dir]: Set this to 0, if the [target VM dir] is the target parent directory
(default) and to 1 if it includes the target file or folder name as last element.
returns: Sets an exit code of 0, if everything went fine, and a non-zero exit
code otherwise.
@B_E

b_dom0_crossCopy [source VM] [source file] [target VM] [target VM
dir] [overwrite] [parent dir] os/qubes4/dom0/b_dom0_crossCopy
Cross copy a file or directory from one VM to another, initiated by dom0. No
user prompt is displayed.
[source VM]: Where to copy the source file from. Must be started.
[source file]: The file or directory to copy.
[target VM]: Where to copy the file to. Must be started.
[target VM dir]: full path to the parent directory in the target VM to copy the
file or directory to; non-existing parent directories are created; the name is taken
from the name of the file/directory in dom0
[overwrite]: Whether or not to overwrite an existing [destination file] (default: 0
= overwrite).
[parent dir]: Set this to 0, if the [target VM dir] is the target parent directory
(default) and to 1 if it includes the target file or folder name as last element.
returns: Sets an exit code of 0, if everything went fine, and a non-zero exit
code otherwise.
@B_E

b_dom0_ensureRunning [vm 1] . . . [vm n] os/qubes4/dom0/b_dom0_ensureRunning
Start or unpause the given VMs if needed.
[vm i]: The VM to start.
returns: Nothing. B_E will be called for VMs that could not be started
(maybe they don’t exist?).
@B_E

b_dom0_isRunning [vm 1] . . . [vm n] os/qubes4/dom0/b_dom0_isRunning
Check whether the given VMs are running and fully operational / not hanging /
not paused / not booting.
In contrast qvm-check --running [vm] returns true for VMs which are
currently booting and qvm-ls doesn’t check whether the OS of a VM is hanging.
[vm i]: The VM to check.
returns: Nothing. B_E will be called for VMs that are not running (or don’t

65

exist?).
@B_E

b_dom0_isHalted [vm 1] . . . [vm n] os/qubes4/dom0/b_dom0_isHalted
Check whether the given VMs are halted.
This is not necessarily the inverse of b_dom0_isRunning as VMs may e.g. be
paused.
[vm i]: The VM to check.
returns: Nothing. B_E will be called for VMs that are not halted (or don’t
exist?).
@B_E

b_dom0_ensureHalted [vm 1] . . . [vm n] os/qubes4/dom0/b_dom0_ensureHalted
Shut down the given VMs if needed.
[vm i]: The VM to halt.
returns: Nothing. B_E will be called for VMs that could not be halted (maybe
they don’t exist?).
@B_E

b_dom0_exists [vm] os/qubes4/dom0/b_dom0_exists
Check whether the given VM exists.
[vm]: The VM to check.
returns: Sets a zero exit code, if the VM exists a non-zero exit code otherwise.

b_dom0_openCrypt [vm] [device] [mapper name] [rw flag]
[mount point] [key file] [additional options] [password prompt]
os/qubes4/dom0/b_dom0_openCrypt
In the given VM, open the given crypto device with dm-crypt and mount it to
the mount point.
[vm]: The VM where to open the crypto device.
[device]: Full path to the device (incl. /dev/) to open.
[mapper name]: The name to assign to the decrypted version of the crypto block
device. The created decrypted device will be found at /dev/mapper/[mapper
name].
[rw flag]: 0=open read-write, 1=open read-only (default: 0)
[mount point]: Where to mount the decrypted data to. Non-existing directories
will be created. If no mount point is specified, it will not be mounted (default).
[key file]: Full vm path to the key to use for decryption. If none is specified,
password-based decryption is assumed and stdin will be read to obtain the
password.
[additional options]: Single string with additional cryptsetup parameters to pass
on (default: none). They are passed as-is, i.e. you’ll have to take care of proper
escaping etc. yourself.
[password prompt]: Optional string to use when the user is required to provide
a decryption password.

66

returns: nothing (except for user interaction prompts if no key file is provided),
but sets a non-zero exit code on errors
@B_E

b_dom0_closeCrypt [vm] [mapper name] [mount point] os/qubes4/dom0/b_dom0_closeCrypt
Close a crypto device opened with b_dom0_openCrypt.
[vm]: The VM where to close the crypto device.
[mapper name]: The name used when it was opened.
[mount point]: If the decrypted data is mounted inside the [vm], please specify
the mount point here so that it can be unmounted before closing the device.
Otherwise the function will attempt to close the device without unmounting
(likely to fail).
returns: nothing, but sets a non-zero exit code on errors
@B_E

b_dom0_parseQvmBlock [variable name] [input] os/qubes4/dom0/b_dom0_parseQvmBlock
Parse data from qvm-block ls to an associative array.
The indices of the associative array will be of the format [counter]_[field]
(counters run from 0 (inclusive) to max (exclusive)).
The special index “max” is equal to the number of lines. It can be used for
iterations over the map.
Currently supported [field] values: backend|device id|id|description|used
by|read-only|frontend-dev
[variable name]: Name of the associative array to use as output.
[input]: Optional output from a previous qvm-block ls call; if none is specified,
this function will execute the call and use its output.
returns: A string specifying an associative array in bash syntax. You
can eval that string to obtain all relevant data or use the more convenient
b_dom0_getQvmBlockInfo. On errors B_E is called.
@B_E

b_dom0_getQvmBlockInfo [map] [retrieve field] [filter field 1] [filter
value 1] .. [filter field n] .. [filter value n] os/qubes4/dom0/b_dom0_getQvmBlockInfo
Convenience function to retrieve information from the output of b_dom0_parseQvmBlock.
Searches for the given filter values in the given fields and retrieves the first field
value matching all filters.
More simple, but less flexible than b_dom0_parseQvmBlock.
[map]: Optional output from a previous call to b_dom0_parseQvmBlock. If
none is specified, this function will internally call b_dom0_parseQvmBlock.
[retrieve field]: Name of the field to retrieve.
[filter field i]: Name of any field supported by b_dom0_parseQvmBlock.
[filter value i]: The value to search for in [filter field i] (equality check).
returns: The value of the requested field and sets a zero exit code on success.
Sets a non-zero exit code if no matching value could be found. On errors B_E
is called.

67

@B_E

b_dom0_attachDevice [dom0 device] [target VM] [rw flag] [force]
os/qubes4/dom0/b_dom0_attachDevice
Attach the given device from dom0 (!) as block device to the target VM.
[dom0 device]: Full path to the device node (incl. /dev/) in dom0.
[target VM]: VM to attach the device to. Must be started.
[rw flag]: If set to 0, attaches the dom0 device in r/w (read-write) mode. If set
to 1 (default), attaches the file in r/o (read only) mode.
[force]: If set to 0, attempt to force Qubes OS to recognize the device (default:
1). This is required for e.g. VM images. Please call b_dom0_detachDevice with
the clean flag for the detach operation, if set to 0.
returns: The full path to the device created in the target VM and sets a zero
exit code on success. Otherwise a non-zero exit code is set.
@B_E

b_dom0_attachFile [dom0 file] [target VM] [rw flag] [force]
os/qubes4/dom0/b_dom0_attachFile
Attach the given file from dom0 (!) as block device to the target VM.
The function may attempt to acquire root privileges (and thus display a
password prompt).
[dom0 file]: Full path to the file in dom0 to attach.
[target VM]: VM to attach the file to. Must be started.
[rw flag]: If set to 0, attaches the dom0 file in r/w (read-write) mode. If set to 1
(default), attaches the file in r/o (read only) mode.
[force]: If set to 0, attempt to force Qubes OS to recognize the device (default:
1). This is required for e.g. VM images. Please call b_dom0_detachDevice with
the clean flag for the detach operation, if set to 0.
returns: The full path to the device created in the target VM and sets a zero
exit code on success. Otherwise a non-zero exit code is set.
@B_E

b_dom0_attachVMDisk [source VM] [target VM] [rw flag] [pool
driver] [disk path] os/qubes4/dom0/b_dom0_attachVMDisk
Attach the entire private disk image (private.img) of the source VM to the target
VM.
Warning: This is contradictory to all Qubes principles and should only be done
if you know exactly what you’re doing. Qubes OS even has some countermeasures
to prevent accidental use of this feature which are bypassed here.
[source VM]: Name of the VM whose private disk to attach to the target VM.
All data of that VM will be shared with the target VM. Will be shut down as
part of this function and must remain shut down as long as the disk is attached.
[target VM]: VM where to attach the disk as block device to. Must be started.
[rw flag]: If set to 0, attaches the disk file in r/w (read-write) mode. If set to 1
(default), attaches the file in r/o (read only) mode.

68

[pool driver]: Driver of the pool that the disk was created in: One of file, file-
reflink or lvm_thin (default: driver of the given [source VM]).
[disk path]: Full path to the disk. Default: Path to the private volume of the
[source VM] in the pool of the respective [pool driver]. May override the [source
VM] parameter.
returns: The full path to the device created in the target VM and sets a
zero exit code on success. Otherwise a non-zero exit code is set. Please call
b_dom0_detachDevice with the clean flag for the detach operation.
@B_E

b_dom0_getPoolDriver [vm] [volume] os/qubes4/dom0/b_dom0_getPoolDriver
Get the name of the pool driver used by the given VM.
[vm]: VM for which to retrieve the pool driver (default: system default pool).
[volume]: VM volume type for which to retrieve the pool driver (default:
private).
returns: Name of the pool driver. B_E is called on errors.
@B_E

b_dom0_getDefaultPoolDriver [volume] os/qubes4/dom0/b_dom0_getDefaultPoolDriver
Retrieve the driver name of the system’s default pool.
[volume]: Volume type for which to retrieve the pool driver (default: private).
returns: Driver name of the system’s default pool.
@B_E

b_dom0_crossAttachDevice [source VM] [source device] [target VM]
[rw flag] os/qubes4/dom0/b_dom0_crossAttachDevice
Attach the given block device from the source VM to the target VM.
This is merely a convenience wrapper for qvm-block attach.
[source VM]: VM where the source file can be found.
[source device]: Device to attach to the [target VM].
[target VM]: VM to attach the device to. Must be started.
[rw flag]: If set to 0, attaches the [source deivce] in r/w (read-write) mode. If
set to 1 (default), attaches the file in r/o (read only) mode.
returns: The full path to the device created in the target VM and sets a zero
exit code on success. Otherwise a non-zero exit code is set.
@B_E

b_dom0_crossAttachFile [source VM] [source file] [target VM] [rw
flag] os/qubes4/dom0/b_dom0_crossAttachFile
Attach the given file from the source VM as block device to the target VM.
[source VM]: VM where the source file can be found.
[source file]: File to attach as block device.
[target VM]: VM to attach the file to. Must be started.
[rw flag]: If set to 0, attaches the [source file] in r/w (read-write) mode. If set to
1 (default), attaches the file in r/o (read only) mode.

69

returns: The full path to the device created in the target VM and sets a zero
exit code on success. Otherwise a non-zero exit code is set.
@B_E

b_dom0_detachDevice [vm] [device] [clean flag] os/qubes4/dom0/b_dom0_detachDevice
Attempts to detach the given device from the VM. This may fail if the VM is
using the device and thus it is usually a better idea to just shut the VM down.
[vm]: VM from which to detach the device.
[device]: Full path to the device in the VM. E.g. the return values of
b_dom0_crossAttachFile, b_dom0_attachFile or b_dom0_attachVMDisk.
[clean flag]: Also wipe the device from the Qubes DB, if it’s there (default: 1).
returns: nothing, but sets a zero exit code on success
@B_E

b_dom0_enterEventLoop [callback function] [heartbeat interval]
os/qubes4/dom0/b_dom0_enterEventLoop
Enter a blocking loop to react to Qubes OS events. b_dom0_disconnectEventLoop
can be used to disconnect from the event loop asynchronously, e.g. from exit
traps.
If you want to obtain an overview of Qubes OS events, please use the qwatch
utility manually.
[callback function]: Name of the function to call for every Qubes OS event.
Since the number of events may be high, the function should do appropriate
filtering at high performance.
The callback function should be declared as follows:

callback_function_name [subject] [event name] [event info] [timestamp]
[subject]: The subject name Qubes OS provides. Usually the VM for which the

event was reported. 'None' appears to mean 'dom0'.
[event name]: Name of the event for which the callback function was called.
[event info]: May contain additional information about the event (e.g.

arguments).
[timestamp]: When the event was received in ms since EPOCH.
returns: Nothing. A non-zero exit code will abort further processing.

[heartbeat interval]: Interval in ms at which to send heartbeat events (default:
no heartbeat events).
returns: Nothing, but uses the exit code of the last callback function execu-
tion as its own. Sets an exit code of 0, if the event loop was terminated by
b_dom0_disonnectEventLoop. B_E is only called on exceptional errors.
@StateChanging
@B_E

b_dom0_disconnectEventLoop os/qubes4/dom0/b_dom0_disconnectEventLoop
Send a termination request to a dom0 event loop started with b_dom0_enterEventLoop.
This is useful to exit the event loop from outside of it.

70

returns: A non-zero exit code indicates that either no active event loop existed
or the signal sending failed. Never errors out to be suitable for e.g. exit traps.
@StateChanging

b_dom0_testMultiple [vm] [operator] [list] os/qubes4/dom0/b_dom0_testMultiple
Run multiple test checks inside the given VM with a single qvm-run call.
[vm]: Where to run the checks.
[operator]: The test operator to use for the list of parameters, e.g. -f.
[list]: Newline-separated list of parameters to check, e.g. a list of files for the -f
operator.
returns: The subset of the list that matched the operator and sets a zero exit
code on success.
@B_E

b_dom0_applyFirewall [vm] [rules] os/qubes4/dom0/b_dom0_applyFirewall
Apply the given rules to the VM firewall.
Important: Since the rules are applied iteratively, there may be short
timeframes during which the VM may have no network access.
[vm]: VM for which to apply the firewall rules.
[rules]: Newline-separated list of firewall rules in raw format (cf. man
qvm-firewall). The rules are added in the order as specified.
(This corresponds to the qvm-firewall --raw [vm] output.) Previously
applied rules are left untouched.
Empty lines and lines starting with # (comments) are ignored.
returns: Nothing. If a rule cannot be added for whatever reason, a drop-all
rule will be inserted in the beginning for security reasons.
@B_E

b_dom0_clearFirewall [vm] os/qubes4/dom0/b_dom0_clearFirewall
Clears the given VM firewall entirely (no rules left). This will make the VM
firewall drop all connections.
Existing connections may continue to work as long as the VM and the connection
remain up (this is a known Qubes OS quirk).
[vm]: VM for which to clear all rules.
returns: Nothing. Errors will result in a drop-all state.
@B_E

proc
Collection of process and thread related functions.

Copyright (C) 2020 David Hobach LGPLv3
0.2

71

Dependencies

kill
killall
tail
timeout

Imports

no imports

Functions

b_proc_pidExists [pid] proc/b_proc_pidExists
Check whether the given process ID exists on the system.
[pid]: process ID to check for existence (process exists)
returns: A zero exit code, if it exists and a non-zero exit code if it doesn’t; this
function attempts to check the existence of the given process across all users,
but it cannot guarantee correctness if the user running this script has very low
privileges.

b_proc_childExists [pid] proc/b_proc_childExists
Check whether the given process ID exists and is a direct child of the calling
bash process.
[pid]: process ID to check
returns: A zero exit code, if the caller is a parent of the given pid.

b_proc_waitForPid [pid] [maximum time] proc/b_proc_waitForPid
Wait for the given process to exit. If it doesn’t exist, exit immediately.
[pid]: Process ID of the process to wait for.
[maximum time]: Maximum time in seconds to wait for the process to exit
(default: 0 = indefinitely).
returns: Nothing, always sets a zero exit code. Use b_proc_pidExists if you
need to know whether the process finished.

b_proc_resolveSignal [signal] proc/b_proc_resolveSignal
Resolve process (kill) signal names to their numeric identifiers.
[signal]: Signal name (string) or numeric identifier.
returns: The numeric identifier corresponding to the given signal.
@B_E

b_proc_killAndWait [pid] [signal] [timeout] proc/b_proc_killAndWait
Send a kill/exit signal to a process and wait for it to terminate.
[pid]: Process ID of the process to wait to terminate.
[signal]: Signal name (string) or numeric identifier to send (default: SIGTERM).
[timeout]: Time in seconds after which to send a SIGKILL if the process doesn’t

72

terminate (default: 0 = wait forever).
returns: A zero exit code, if the process terminated without timeout or could
not be found.
@B_E

b_proc_killByRegexAndWait [regex] [signal] [timeout] proc/b_proc_killByRegexAndWait
Kill/Terminate all matching processes.
[regex]: Regular expression matched against running process names. Matching
processes will be terminated.
[signal]: Signal name (string) or numeric identifier to send (default: SIGTERM).
[timeout]: Time in seconds after which to send a SIGKILL if the processes don’t
terminate (default: 0 = wait forever).
returns: A zero exit code, if the process terminated without timeout or could
not be found.
@B_E

sqlite3
Stateful sqlite driver for bash.

This module provides all features of the sqlite interactive mode to non-interactive
bash scripts. See man sqlite3 for the available commands.

Keeping a single database connection open usually exhibits better performance
than calling sqlite3 in batch mode over and over again.

Side Note: If you want to read or write csv files, this module can also do the job
for you with standard SQL syntax. See man sqlite3 on how to read and write
csv files with sqlite.

Copyright (C) 2020 David Hobach LGPLv3
0.5

Dependencies

mkfifo
mktemp
rm
sqlite3

Imports

no imports

Functions

b_sqlite3_open [db file] [timeout] sqlite3/b_sqlite3_open
Open a new sqlite connection to a database. This must be called exactly once

73

before any calls to b_sqlite3_exec.
[db file]: The database file to connect to (default: a new in-memory database).
If it doesn’t exist, it may be created (the behaviour is identical to sqlite3).
[timeout]: Maximum time in seconds to wait for a command to execute on the
database via b_sqlite3_exec. Default: -1 = indefinitely
returns: Nothing.
@StateChanging
@B_E

b_sqlite3_getOpen sqlite3/b_sqlite3_getOpen
Retrieve the currently open database.
returns: Prints the currently open database and an empty string for an unnamed
database. Sets a zero exit code, if and only if a database is currently open.

b_sqlite3_exec [command] [timeout] [filter input] sqlite3/b_sqlite3_exec
Executes the given command on an open sqlite database (cf. b_sqlite3_open).
[command]: The command to execute. All commands supported by sqlite3 in
interactive mode incl. the SQL commands are supported. The only exception
is the .output command. Please use the bash output redirection instead of
.output. Warning: Incomplete (e.g. missing ;) or incorrect commands may
cause this function to make your bash script hang forever, if no [timeout] is
specified.
[timeout]: Maximum time in seconds to wait for the command to execute on the
database (default: the timeout initialized via b_sqlite3_open).
[filter input]: Whether or not to filter command input lines from the returned
output (default: 0 = true).
returns: The output provided by the database in response to the executed
command incl. potential errors. The function attempts to set a non-zero exit
code, if the output contains error messages. B_E is only called on timeouts or
other database connectivity issues.
@B_E

b_sqlite3_close sqlite3/b_sqlite3_close
Closes a currently open database connection.
It is highly recommended to execute this function once you don’t need the
database connection anymore (usually at the end of a script).
returns: Nothing. A non-zero exit code indicates a failed close operation.
@StateChanging

str
Collection of string related functions.

Copyright (C) 2021 David Hobach LGPLv3
0.2

74

Dependencies

no dependencies

Imports

no imports

Functions

b_str_stripQuotes [string] str/b_str_stripQuotes
Remove any single or double quotes around the given string.
[string]: string which might be enclosed in single or double quotes (’ or ")
returns: [string] without the enclosed single or double quotes, if there were any;
if none were found the original string is returned; the exit code is always zero

b_str_trim [string] str/b_str_trim
Remove any whitespace from around a string.
[string]: string to trim
returns: [string] beginning and ending without whitespace; the exit code is
always zero

b_str_prefixLines [string] [prefix] str/b_str_prefixLines
Prefix all lines of the given string with a given prefix.
[string]: Each line of this string will be prefixed.
[prefix]: The string to put in front of each line.
returns: All lines of the input string, each of them prefixed with the given
prefix.

tcolors
Defines some tput related constants. In order to change terminal colors you can
then use something such as

echo "$(tput setaf ${B_TCOLORS[red]})This is red, \
$(tput setaf ${B_TCOLORS[blue]})this blue, $(tput sgr0)this normal."

tput can do a lot more than colors, see: man tput & man terminfo.

Copyright (C) 2018 David Hobach LGPLv3
0.1

Dependencies

tput

Imports

no imports

75

Global Variables

B_TCOLORS tcolors/B_TCOLORS
Global map for human readable colors to tput style color identifiers.
Currently supported values: black|red|green|yellow|blue|magenta|cyan|white

traps
Collection of trap related functions.

Copyright (C) 2018 David Hobach LGPLv3
0.2

Dependencies

no dependencies

Imports

no imports

Functions

b_traps_getCodeFor [signal] traps/b_traps_getCodeFor
Retrieve the current trap code / commands for the given signal.
returns: The current code and sets a zero exit code on success.
@B_E

b_traps_add [code] [signal] [tag] [append flag] traps/b_traps_add
Add the given commands to the given trap signal.
[code]: Whatever should be added to the trap.
[signal]: Name of the signal to add the commands to.
[tag]: An optional unique marker for these commands so that they can be
removed with b_traps_remove later on.
[append flag]: Whether to append the new commands to the end (0: default) or
insert them in the beginning (1).
returns: Whatever the internal call to trap to set the new trap returns.
@B_E

b_traps_prepend [code] [signal] [tag] traps/b_traps_prepend
Prepend the given commands to the ones currently existing for the given trap
signal.

Convenience wrapper to b_traps_add with [append flag] set to 1.
[code]: see b_traps_add
[signal]: see b_traps_add
[tag]: see b_traps_add

76

returns: see b_traps_add
@B_E

b_traps_remove [signal] [tag] traps/b_traps_remove
Remove the commands tagged with the given tag from the signal trap.
[signal]: Name of the signal to remove the commands from.
[tag]: The unique marker to identify the commands to be removed.
returns: Nothing, but sets a zero exit code on success. May error out if the tag
isn’t found or the internal trap call failed.
@B_E

types
Functions for data type checks and conversions.

Copyright (C) 2022 David Hobach LGPLv3
0.6

Dependencies

python3

Imports

no imports

Global Variables

B_TYPES_ENCODING types/B_TYPES_ENCODING
String encoding parameter for b_types_str and b_types_parseString. Default:
ascii
ascii makes sense in 99% of all cases as scripts should use ASCII only anyway
(when no user-interaction is involved) in order to remain portable. Keep in mind
that bash also needs to support the target encoding in order to support further
processing. Currently available encodings: https://docs.python.org/3.7/library/
codecs.html#standard-encodings

B_TYPES_MAX_BYTES types/B_TYPES_MAX_BYTES
Parameter for b_types_str and b_types_parseString to specify the maximum
number of bytes to read per line (default: -1/infinite). Ignore additional bytes.
Useful to avoid memory DoS for untrusted input.

B_TYPES_CHECK_NON_BINARY types/B_TYPES_CHECK_NON_BINARY
Whether or not b_types_int should also ensure that the command output is
non-binary (default: 0/true).

77

https://docs.python.org/3.7/library/codecs.html#standard-encodings
https://docs.python.org/3.7/library/codecs.html#standard-encodings

Functions

b_types_parseString [encoding] [max bytes] types/b_types_parseString
Checks whether whatever is lying in stdin is a string (and not binary) and if so,
prints it to stdout.

Important:

• bash has major issues whenever binary data is involved. For example
equality checks may return undefined results. So whenever you are unsure
as to whether a variable is a string or not, better pass it thorugh this
function.

• The input is taken from stdin rather than as parameter as binary parameters
may also cause issues (special bytes etc.).

• Even builtins such as echo do not necessarily play well with binary data.
So it is recommended to pipe binary data through this function before
further processing.

Examples:

#check a file
b_types_parseString < "/path/to/potential/binary" > /dev/null && echo "It is a string file." || echo "It is a binary file."

#read parts of a file as string
str="$(dd if="/path/to/another/file" bs=1 skip=8 | b_types_parseString)"
[$? -eq 0] && echo "Found the following string: $str"

[encoding]: The encoding of the string lying in stdin. Default: B_TYPES_ENCODING/ascii
[max bytes]: Maximum number of bytes to read per line. Additional bytes are
ignored. Default: B_TYPES_MAX_BYTES/-1/infinite
returns: The data as String, if the input data was found to be a String. If no
String was found to be lying in stdin, the output is an undefined string and a
non-zero exit code is set. B_E is only called on exceptional errors.
@B_E

b_types_str [cmd] [cmd arg 1] . . . [cmd arg n] types/b_types_str
Execute the given command and ensure that its output / stdout is a string.
Use B_TYPES_ENCODING to specify the encoding (default: ascii) and
B_TYPES_MAX_BYTES (default: -1/infinite) to specify the maximum num-
ber of bytes to read.
[cmd]: Command to execute. Stdout is checked to be a string, stderr is passed
through.
[cmd arg i]: Arguments to pass to [cmd].
returns: Stdout of [cmd], if it is a string and an undefined string otherwise.
The exit code is that of the executed command. B_E is called if the output is
not a string.
@B_E

78

b_types_parseInteger types/b_types_parseInteger
Checks whether whatever is lying in stdin is an Integer and if so, prints it to
stdout.
B_TYPES_CHECK_NON_BINARY can be used to enable/disable additional
non-binary checking (default: 0/enabled).
returns: The data as Integer, if the input data was found to be an Integer. If
no Integer was found to be lying in stdin, the output is an undefined string and
a non-zero exit code is set. B_E is only called on exceptional errors.
@B_E

b_types_isInteger [string] types/b_types_isInteger
Check whether the given String is an integer (positive or negative) or not.
B_TYPES_CHECK_NON_BINARY can be used to enable/disable additional
non-binary checking (default: 0/enabled).
[string]: The string to check.
returns: Nothing, but sets a zero exit code if and only if the given string
represents an integer.

b_types_assertInteger [string] [error msg] types/b_types_assertInteger
Check whether the given String is an integer (positive or negative) and if not,
error out.
B_TYPES_CHECK_NON_BINARY can be used to enable/disable additional
non-binary checking (default: 0/enabled).
[string]: The string to check.
[error msg]: Error message to use, if the check fails (optional).
returns: Nothing. If it’s no integer, B_E is called.
@B_E

b_types_int [cmd] [cmd arg 1] . . . [cmd arg n] types/b_types_int
Execute the given command and ensure that its output / stdout is an integer
(positive or negative).
B_TYPES_CHECK_NON_BINARY can be used to enable/disable additional
non-binary checking (default: 0/enabled).
[cmd]: Command to execute. Stdout is checked to be an integer, stderr is passed
through.
[cmd arg i]: Arguments to pass to [cmd].
returns: Stdout of [cmd], if it is an integer and an undefined string otherwise.
The exit code is that of the executed command. B_E is called if the output is
not an integer.
@B_E

b_types_looksLikeArray [string] types/b_types_looksLikeArray
Check whether the given String “looks like” a bash array or not.
It may still contain malicious code or whatnot. So you must not rely on this
function when processing untrusted input.

79

[string]: The string to check. Use "$(declare -p var)" on variables to obtain
it.
returns: Nothing, but sets a zero exit code if the given string looks like it could
be eval’ed to a bash array. References (declare -n) will result in a non-zero
exit code.

b_types_assertLooksLikeArray [string] [error msg] types/b_types_assertLooksLikeArray
Check whether the given String “looks like” a bash array and if not, error out.
It may still contain malicious code or whatnot. So you must not rely on this
function when processing untrusted input.
[string]: The string to check. Use "$(declare -p var)" on variables to obtain
it.
[error msg]: Error message to use, if the check fails (optional).
returns: Nothing. If doesn’t look like a bash array, B_E is called.
@B_E

b_types_looksLikeMap [string] types/b_types_looksLikeMap
Check whether the given String “looks like” a bash map / associative array or
not.
It may still contain malicious code or whatnot. So you must not rely on this
function when processing untrusted input.
[string]: The string to check. Use "$(declare -p var)" on variables to obtain
it.
returns: Nothing, but sets a zero exit code if the given string looks like it could
be eval’ed to a bash associative array. References (declare -n) will result in a
non-zero exit code.

b_types_assertLooksLikeMap [string] [error msg] types/b_types_assertLooksLikeMap
Check whether the given String “looks like” a bash map / associative array and
if not, error out.
It may still contain malicious code or whatnot. So you must not rely on this
function when processing untrusted input.
[string]: The string to check. Use "$(declare -p var)" on variables to obtain
it.
[error msg]: Error message to use, if the check fails (optional).
returns: Nothing. If doesn’t look like a bash array, B_E is called.
@B_E

ui
Collection of user interface and user interaction related functions.

Copyright (C) 2020 David Hobach LGPLv3
0.2

80

Dependencies

no dependencies

Imports

no imports

Functions

b_ui_passwordPrompt [output var] [ui mode] [prompt string]
ui/b_ui_passwordPrompt
Prompt the user for a password. Should run inside the parent process (i.e. not
inside a subshell).
Once you do not need the password anymore, it is recommended to wipe it from
memory as such:

#overwrite the password in memory with zeroes, then free it
pass="${pass//?/0}" ; pass=""

[output var]: The name of the variable to write the password to.
[ui mode]: How to request the password from the user: auto|gui|tty (default:
auto).
[prompt string]: The string to present to the user asking for the password
(default: “Password:”).
returns: Nothing. Sets a non-zero exit code on errors.
@B_E

wm
Collection of functions related to window managers.

Copyright (C) 2020 David Hobach LGPLv3
0.1

Dependencies

wmctrl

Imports

no imports

Functions

b_wm_getActiveWindowProperties [variable name] wm/b_wm_getActiveWindowProperties
Retrieve information about the currently active windows.
[variable name]: Name of the associative array to use as output.
returns: A string specifying an associative array in bash syntax. You can eval

81

that string to obtain all relevant data. On errors B_E is called.
The information is returned as an associative array containing the following
data:
[window ID]_[id] = hexadecimal window ID
[window ID]_[desktop] = desktop number
[window ID]_[pid] = PID of the window
[window ID]_[x] = x-offset
[window ID]_[y] = y-offset
[window ID]_[width] = window width
[window ID]_[height] = window height
[window ID]_[class] = window class name
[window ID]_[client] = client machine name
[window ID]_[title] = window title
Missing data may result in an empty String for the respective property.
@B_E

Reference List
B_ARGS

b_args_assertOptions

b_args_get

b_args_getAll

b_args_getAllOptions

b_args_getCount

b_args_getInt

b_args_getOption

b_args_getOptionCount

b_args_getOptionInt

b_args_getOptionParamSeparator

b_args_init

B_ARGS_OPTS

b_args_parse

b_args_setOptionParamSeparator

b_arr_contains

b_arr_join

b_arr_mapsAreEqual

b_arr_toList

82

b_assertLastPipes

b_cachingMessageHandler

B_CALLER_NAME

b_cdoc_cbPrintFirstParam

b_cdoc_cbPrintNewline

b_cdoc_generate

b_cdoc_generateBlibStyle

b_cdoc_getBlockCallback

b_cdoc_getDocumentBeginCallback

b_cdoc_getDocumentEndCallback

b_cdoc_getExtractionRegex

b_cdoc_getFileCallback

b_cdoc_getPostProcessingCallback

b_cdoc_setBlockCallback

b_cdoc_setDocumentBeginCallback

b_cdoc_setDocumentEndCallback

b_cdoc_setExtractionRegex

b_cdoc_setFileCallback

b_cdoc_setPostProcessingCallback

b_checkVersion

B_CONF_DIR

b_daemon_getPid

B_DAEMON_ID

b_daemon_init

b_daemon_restart

b_daemon_sendSignal

b_daemon_start

b_daemon_status

b_daemon_statusPid

b_daemon_stop

b_date_add

83

b_date_addDays

b_date_diff

b_date_getFileModAge

b_defaultErrorHandler

b_defaultMessageHandler

b_delay_execute

B_DELAY_EXECUTED

b_delay_getCommandAt

b_delay_to

b_deps

b_dmcrypt_close

b_dmcrypt_createLuks

b_dmcrypt_getMapperName

b_dmcrypt_init

b_dmcrypt_isOpen

b_dmcrypt_open

b_dom0_applyFirewall

b_dom0_attachDevice

b_dom0_attachFile

b_dom0_attachVMDisk

b_dom0_clearFirewall

b_dom0_closeCrypt

b_dom0_copy

b_dom0_createLoopDeviceIfNecessary

b_dom0_crossAttachDevice

b_dom0_crossAttachFile

b_dom0_crossCopy

b_dom0_detachDevice

b_dom0_disconnectEventLoop

b_dom0_ensureHalted

b_dom0_ensureRunning

84

b_dom0_enterEventLoop

b_dom0_execFuncIn

b_dom0_execIn

b_dom0_execStrIn

b_dom0_exists

b_dom0_getDefaultPoolDriver

b_dom0_getDispVMs

b_dom0_getPoolDriver

b_dom0_getQvmBlockInfo

b_dom0_getVMDeps

b_dom0_isHalted

b_dom0_isMountedIn

b_dom0_isRunning

b_dom0_mountIfNecessary

b_dom0_openCrypt

b_dom0_parseQvmBlock

b_dom0_qvmRun

B_DOM0_QVM_RUN_PARAMS

b_dom0_removeUnusedLoopDevice

b_dom0_setVMDeps

b_dom0_startDispVM

b_dom0_testMultiple

B_DOM0_VM_STDERR

b_dom0_waitForFileIn

B_E

b_enforceUser

B_ERR

b_error

b_execFuncAs

b_execFuncInCurrentContext

b_fd_closeAll

85

b_fd_closeNonStandard

b_fd_getOpen

b_flog_close

b_flog_defaultHeader

b_flog_getDateFormat

b_flog_getHeaderFunction

b_flog_getLogReductionLinesLowerBound

b_flog_getLogReductionLinesUpperBound

b_flog_headerDateScriptSeverity

b_flog_headerDateSeverity

b_flog_init

b_flog_log

b_flog_messageHandler

b_flog_printSeverity

b_flog_setDateFormat

b_flog_setHeaderFunction

b_flog_setLogReductionLinesApprox

b_flog_setLogReductionLinesLowerBound

b_flog_setLogReductionLinesUpperBound

B_FLOG_SEV

b_fs_createLoopDeviceIfNecessary

b_fs_enumerate

b_fs_getBlockDevice

b_fs_getLineCount

b_fs_getMountpoints

b_fs_isEmptyDir

b_fs_isRotatingDrive

b_fs_mountIfNecessary

b_fs_parseSize

b_fs_removeRelativelySafely

b_fs_removeUnusedLoopDevice

86

b_fs_removeWithOverwrite

b_fs_waitForFile

b_generateStandalone

b_getBlibModules

b_getDefaultMessageHandlerIntermediate

b_getDefaultMessageHandlerPrefix

b_getErrorHandler

b_getMessageHandler

b_hash_file

b_hash_str

B_HTTP_CHECKURLS

b_http_getOnlineStatus

b_http_rawUrlDecode

b_http_rawUrlEncode

b_http_testProxy

b_import

b_info

b_ini_assertNames

b_ini_get

b_ini_getBool

b_ini_getInt

b_ini_getString

b_ini_read

b_initCachingMessageHandler

b_ipcm_change

b_ipcm_get

b_ipcm_getNamespace

b_ipcm_setNamespace

b_ipcm_unsetNamespace

b_ipcv_load

b_ipcv_loadNamespace

87

b_ipcv_save

b_ipcv_unset

b_ipcv_unsetNamespace

b_isFunction

b_isModule

b_keys_add

b_keys_close

b_keys_delete

b_keys_get

b_keys_getAll

b_keys_getContent

b_keys_getDefaultStore

b_keys_init

B_LIB_DIR

b_listContains

b_meta_getClearDeps

b_meta_getClearImports

b_mtx_create

b_mtx_forceRelease

b_mtx_getSleepTime

b_mtx_pass

b_mtx_release

b_mtx_setSleepTime

b_mtx_try

b_mtx_waitFor

b_multiw_getMaxHangTime

b_multiw_remove

b_multiw_setMaxHangTime

b_multiw_write

B_NET_CHECKHOSTS

B_NET_DNSSERVERS

88

b_net_getDNSStatus

b_nop

b_notify_send

b_notify_sendNoError

b_notify_waitForUserDbus

b_osid_init

b_osid_isCentOS

b_osid_isDebian

b_osid_isDebianLike

b_osid_isFedora

b_osid_isFedoraLike

b_osid_isOpenSuse

b_osid_isQubesDom0

b_osid_isQubesVM

b_osid_isRedHat

b_osid_isUbuntu

b_printStackTrace

b_proc_childExists

b_proc_killAndWait

b_proc_killByRegexAndWait

b_proc_pidExists

b_proc_resolveSignal

b_proc_waitForPid

B_RC

b_resetErrorHandler

B_SCRIPT

B_SCRIPT_DIR

B_SCRIPT_NAME

b_setBE

b_setDefaultMessageHandlerIntermediate

b_setDefaultMessageHandlerPrefix

89

b_setErrorHandler

b_setMessageHandler

b_silence

b_sqlite3_close

b_sqlite3_exec

b_sqlite3_getOpen

b_sqlite3_open

b_str_prefixLines

b_str_stripQuotes

b_str_trim

B_TCOLORS

B_TEST_MODE

b_traps_add

b_traps_getCodeFor

b_traps_prepend

b_traps_remove

b_types_assertInteger

b_types_assertLooksLikeArray

b_types_assertLooksLikeMap

B_TYPES_CHECK_NON_BINARY

B_TYPES_ENCODING

b_types_int

b_types_isInteger

b_types_looksLikeArray

b_types_looksLikeMap

B_TYPES_MAX_BYTES

b_types_parseInteger

b_types_parseString

b_types_str

b_ui_passwordPrompt

b_version

90

b_wm_getActiveWindowProperties

91

	blib
	Disclaimer
	Coding Conventions
	Library Usage
	Dependencies
	Imports
	Global Variables
	Global Aliases
	Functions

	args
	Dependencies
	Imports
	Global Variables
	Functions

	arr
	Dependencies
	Imports
	Functions

	cdoc
	Dependencies
	Imports
	Functions

	daemon
	Dependencies
	Imports
	Global Variables
	Functions

	date
	Dependencies
	Imports
	Functions

	delay
	Dependencies
	Imports
	Global Variables
	Functions

	dmcrypt
	Dependencies
	Imports
	Functions

	fd
	Dependencies
	Imports
	Functions

	flog
	Dependencies
	Imports
	Global Variables
	Functions

	fs
	Dependencies
	Imports
	Functions

	hash
	Dependencies
	Imports
	b_hash_file [file] [algorithm]
	b_hash_str [string] [algorithm]

	http
	Dependencies
	Imports
	Global Variables
	Functions

	ini
	Dependencies
	Imports
	Functions

	keys
	Dependencies
	Imports
	Functions

	meta
	Dependencies
	Imports
	Functions

	multithreading/ipcm
	Dependencies
	Imports
	Functions

	multithreading/ipcv
	Dependencies
	Imports
	Functions

	multithreading/mtx
	Dependencies
	Imports
	Functions

	multithreading/multiw
	Dependencies
	Imports
	Functions

	net
	Dependencies
	Imports
	Global Variables
	Functions

	notify
	Dependencies
	Imports
	Functions

	os/osid
	Dependencies
	Imports
	Functions

	os/qubes4/dom0
	Dependencies
	Imports
	Global Variables
	Functions

	proc
	Dependencies
	Imports
	Functions

	sqlite3
	Dependencies
	Imports
	Functions

	str
	Dependencies
	Imports
	Functions

	tcolors
	Dependencies
	Imports
	Global Variables

	traps
	Dependencies
	Imports
	Functions

	types
	Dependencies
	Imports
	Global Variables
	Functions

	ui
	Dependencies
	Imports
	Functions

	wm
	Dependencies
	Imports
	Functions

	Reference List

